Wy

Willow Technology

MQSeries for IRIX
System Management Guide

Version 2

First Edition — May, 1999

Note!

Before using this information and the product it supports, be sure to read the general information
under "Notices".

First edition (May, 1999)

This edition applies to MQSeries for IRIX Version 2 and to any subsequent releases and
modifications until otherwise indicated in new editions.

If you want to make comments regarding this publication please send them to one of the folowing:

Willow Technology, Inc.
Publications

P.O. Box 320005

Los Gatos, CA 95032-0100
USA

or to email address: support@willowtech.com.

When you send information to Willow Technology, you grant Willow Technology a nonexclusive
right to use or distribute the information in any way it believes appropriate without incurring any
obligation to you.

© Copyright 1998-1999 Willow Technology, Inc. and its Licencors. All rights reserved.
Note to U.S. government Users -- Documentation related to restricted rights -- Use, duplication or
disclosure is subject to restrictions set forth in FARS and D-FARS.

Table of Contents

Figures

Notices
Trademarks

About this book

Who this book is for

What vou need to know to understand this book

How to use this book

MQSeries publications

Information about MQSeries on the Internet

Part 1. Guidance section

Chapter 1. Introduction

MQSeries and message queuing

Messages and queues

Objects

System default objects

Administration

Clients and servers

Extending queue manager facilities

Security
Chapter 2. Installing MQSeries for IRIX

Components you can install

Installation requirements

Preparing for installation

Installation

Kernel configuration

Directories that exist after installation

Translated messages

Verifvine your installation

Installing clients

Chapter 3. Customizing your system

Things you can customize
Chapter 4. Understanding administration command sets

Control commands

MQSeries commands (MQSC)

PCF commands

Comparing command sets

Chapter 5. Managing gueue managers

Getting started

Guidelines for creating queue managers

Working with queue managers

Managing the command server for remote administration

Chapter 6. Administering local MQSeries objects

Supporting application programs that use the MQI

Issuing MQSC commands for administration
Running MQSC commands from text files

If you have problems with MQSC

Browsing queues

Working with local queues
Working with alias queues
Working with model queues

Managing objects for triggering
Chapter 7. Administering remote MQSeries objects

Understanding channels and remote queuing

Creating a local definition of a remote queue

Remote administration

Using remote queue definitions for aliasing

Chapter 8. Security

Before vou begin

Why yvou need to protect MQSeries resources

Understanding the Object Authority Manager
Using the OAM commands

Object Authority Manager guidelines
Understanding the authorization specification tables

Understanding authorization files

Chapter 9. Instrumentation events

What instrumentation events are

Why use events?

Chapter 10. Transactional support and messaging

Interfaces to external syncpoint coordinators

Chapter 11. The MQSeries dead-letter queue handler

Invoking the DLQ) handler
The DL.Q handler rules table

How the rules table is processed

An example DLQ handler rules table

Chapter 12. Recovery and restart

Making sure that messages are not lost (logging)

Managing logs

Using the log for recovery

Backup and restore

Recovery scenatios

Chapter 13. Understanding configuration files

What configuration files are

MQSeries configuration file

Queue manager configuration file

Editing configuration files

Configuring the logs

Specifying log file sizes

Chapter 14. Problem Determination

Preliminary checks
Common programming errors
Understanding MQ)Series file names

What to do next

Application design considerations

Incorrect output

Error logs

Dead-letter queues

Configuration files and problem determination

Using trace

First failure support technology

Problem determination with clients

Part 2. Reference section

Chapter 15. MQSeries control commands

Names

How to read syntax diagrams

Syntax help

crtmqgcvx (Data conversion)

crtmgm (Create queue manager)

dltmgm (Delete queue manager)

dspmgqaut (Display authority)

dspmqcsv (Display command server)

dspmgfls (Display MQSeries files)

dspmgtrc (Display MQSeries formatted trace output)

dspmqtrn (Display MQSeries transactions)

endmgqcsv (End command server)
endmgm (End queue manager)

endmqtrc (End MQSeries trace)

redmgimg (Record media image)

rermqobj (Recreate object)

rsvmqtrn (Resolve MQ)Series transactions)

runmgqchi (Run channel initiator)

runmgqchl (Run channel)

runmqdlg (Run dead-letter queue handler)

runmgsc (Run MQSeries commands)

runmqtme (Start client trigger monitor)

runmqtrm (Start trigger monitor)

setmgqaut (Set/reset authority)

strmqcsv (Start command server)
strmgm (Start queue manager)

strmqtre (Start MQ)Series trace)

Part 3. Appendixes

Appendix A. MQSeries for IRIX at a glance

Appendix B. System defaults

Appendix C. Directory structure

Queue manager log directory structure

Appendix D. Sample MQI programs and MQSC files

Appendix E. Support for different codesets on MQSeries for IRIX

Appendix F. Stopping and removing queue managers manually

Stopping a queue manager manually

Removing queue managers manually

Appendix G. Messages

Message format

Structure of messages

MQSeries messages

Chapter 16. Glossary of terms and abbreviations

Index

Figures

1. Default directory structure for the product files

2. Commands for queue manager administration
3. Commands for command server administration
4. Commands for queue administration

5. Commands for process administration

6. Commands for channel administration

7. Other control commands

8. Queues, messages, and applications

9. Extract from the MQSC command file, myprog.in

10. Extract from the MQSC report file, myprog.out.

11. Remote administration

12. Setting up channels and queues for remote administration
13. Security authorization needed for MQI calls

14. MQSC commands and security authorization needed (1)
15. PCF commands and security authorization needed (1)

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

Understanding instrumentation events

Monitoring queue managers across different platforms, on a single node

An example control-data entry in the DILQ) handler rules table

An example rule from a DLQ) handler rules table

An example rules table for the DL.Q) handler
Checkpointing

Checkpointing with a long-running transaction
Example MQSeries configuration file
Example queue manager configuration file

Log overhead sizes

Sample MQSeries for IRIX trace

Sample MQSeries for IRIX First Failure Symptom Report.

How to read syntax diagrams

Security authorities from the dspmgaut command

Specifying authorizations for different object types

Objects included in amgIRIXma.tst

Default directory structure after a queue manager has been started
MQSC command files

Sample programs - source files

Miscellaneous files

Locales and CCSIDs

Notices

References in this publication to Willow Technology products, programs, or services do not imply
that Willow Technology intends to make these available in all countries in which Willow Technology
operates.

Any reference to an Willow Technology product, program, or service is not intended to state or
imply that only that Willow Technology product, program, or service may be used.

The following paragraph does not apply to any country where such provisions are
inconsistent with local law:

WILLOW TECHNOLOGY, INC PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore this statement may not apply to you.

Any functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of Willow Technology and its Licensors may be used instead of the
Willow Technology product, program, or service. The evaluation and verification of operation in
conjunction with other products, except those expressly designated by Willow Technology and its
Licensors, are the responsibility of the user.

Willow Technology and its Licensors may have patents or pending patent applications covering
subject matter in this document. The furnishing of this document does not give you any license to
these patents.

Trademarks

Willow Technology, the Willow logo and willowtech.com are trademarks of Willow Technology,
Inc.

The following terms are trademarks of the IBM Corporation in the United States, or other countries,
ot both:

AS/400 IBM

AIX AIX/6000
MQSeries MVS/ESA
NetView CICS
0S/2 0OS/400
Operating System/2 PS/2

RISC System/6000 SAA

Windows is a trademark of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

SGI and IRIXare registered trademarks of Silicon Graphics, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may
be trademarks or service marks of others.

About this book

This book refers to the MQSeries for IRIX Version 2 product produced by Willow Technology.

MQSeries for IRIX is part of the MQSeries family of products. These products provide application
programming services that enable application programs to communicate with each other using
message queues. This form of communication is referred to as commercial messaging. The applications
involved can exist on different nodes on a wide variety of machine and operating system types. They
use a common application programming interface, called the Message Queuing Interface or MQI, so
that programs developed on one platform can readily be transferred to another.

This book describes the system administration aspects of MQSeries for IRIX and the services it
provides to support commercial messaging in an SGI IRIX environment. This includes managing
the queues that applications use to receive their messages, and ensuring that applications have access
to the queues that they require.

Who this book is for

Primarily, this book is for system administrators, and system programmers who manage the
configuration and administration tasks for MQSeries. It is also useful to application programmers
who must have some understanding of MQSeries administration tasks.

What you need to know to understand this book

To use this book, you should have a good understanding of the SGI IRIX operating system, and
utilities associated with it. You do not need to have worked with message queuing products before,
but you should have an understanding of the basic concepts of message queuing.

How to use this book

Read Chapter 1. "Introduction" first for an understanding of MQSeries for IRIX.

The sections of this book contain information about:
How to manage your MQSeries system:
- Install and set up the product
- Manage queue managers and queues
- Monitor queue managers using instrumentation events
- Set up security
- Recover from a system failure
- Analyze any problems that arise
The MQSeries control commands, including railroad syntax diagrams.

Sample resource definitions.

MQSeries for IRIX system restrictions

The following restrictions apply to the use of MQSeries for IRIX facilities with the MQSeries
product:

1. MQCONN sets up its own signal handler for the signals:

SIGSEGV
SIGBUS

User's handlers for these are restored after every MQI call.
The remaining signals are handled differently.

SIGINT
SIGQUIT
SIGFPE
SIGTERM
SIGHUP

If any handler for this second group of signals receives an interrupt within an MQI call, the
application handler must exit the application. MQI may not be called.

2. For each MQI call, MQSeries uses the UNIX interval timer ITIMER_REAL to generate
SIGALRM signals. Any previous SIGALRM handler and timer interval is saved on entry to
MQI and restored on exit. Any timer interval set is therefore frozen while within MQI.

MQSeries publications

Evaluating products
MQSeries Brochure, G511-1908
MQSeries: An Introduction to Messaging and Queuing, GC33-0805
MQSeries Message Queue Interface Technical Reference, SC33-0850
Planning
MQSeries Planning Guide, GC33-1349
MQSeries for MVVS/ESA Version 1 Release 1.4 Licensed Program Specifications, GC33-1350

MQSeries for OS/400 Version 3 Release 1 (and later) Licensed Program Specifications, GC33-1360
(softcopy only)

Administration
MQSeries Clients, GC33-1632
MQSeries Command Reference, SC33-1369
MQSeries Programmable System Management, SC33-1482
MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373
MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for SCO OpenServer and MQSeries for UnixWare Version 2 System Management Guide (Willow
Technology publication)

MQSeries for IRIX Version 2 System Management Guide (Willow Technology publication)
MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide, GC33-1768
MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide, SC33-1643

MQSeries for MVVS/ESA Version 1 Release 1.4 Program Directory

MQSeries for MVVS/ESA Version 1 Release 1.4 System Management Guide, SC33-0806
MQSeries for OS/400 Version 3 Release 2 Administration Guide, GC33-1361

MQSeries for OS/400 Version 3 Release 6 Administration Guide, SC33-1361

MQSeries for OS/400 Version 3 Release 6 Programmable Command Formats, SC33-1228
MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
Application programming
MQSeries Application Programming Guide, SC33-0807
MQSeries Application Programming Reference, SC33-1673
MQSeries Application Programming Reference Summary, SX33-6095

MQSeries for OS/400 Version 3 Release 1 (and later) Application Programming Reference (RPG), SC33-
1362

MQSeries for OS/400 Version 3 Release 6 Application Programming Reference (C and COBOL), SC33-
1363

MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452
MQSeries Three Tier Reference Summary, SX33-6098
Problem determination
MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373
MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for IRIX Version 2 System Management Guide
(Willow Technology publication)

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for SCO OpenServer and MQSeries for UnixWare Version 2 System Management Guide (Willow
Technology publication)

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide, GC33-1768
MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

MQSeries for Windows NT Version 2.0 System Management Guide, SC33-1643

MQSeries for MVVS/ESA Version 1 Release 1.4 Messages and Codes, GC33-0819
MQSeries for MV S/ESA Version 1 Release 1.4 Problem Determination Guide, GC33-0808
MQSeries for OS/400 Version 3 Release 2 Administration Guide, GC33-1361

MQSeries for OS/400 Version 3 Release 6 Administration Guide, SC33-1361
MQSeries Three Tier Administration Guide, SC33-1451
Special topics

MQSeries Distributed Queuing Guide, SC33-1139

Information about MQSeries on the Internet

The Willow Technology home page

The URL of the Willow Technology home page is: http://www.willowtech.com

The IBM MQSeries home page

The URL of the MQSeries product family home page is:
http://www.software.ibm.com/ts/mgseties/

Part 1. Guidance section

Chapter 1. Introduction

This chapter introduces MQSeries for IRIX from an administrator's perspective, and describes the
basic concepts of MQSeries and messaging. It contains these sections:

"MQSeries and message queuing"

"Messages and queues”

"Objects"

"System default objects"

"Administration"

"Clients and servers"

'

'Extending queue manager facilities"

'

'Security”

MQSeries and message queuing

MQSeries for IRIX applications use message queuing to participate in message-driven processing.
Applications can communicate across different platforms by using the appropriate message queuing
software products. For example, IRIX and MVS/ESA applications can communicate through

MQSerties for IRIX and MQSeries for MVS/ESA respectively. The applications are shielded from
the mechanics of the underlying communications.

MQSeries products implement a common application programming interface (message queue
interface or MQI) whatever platform the applications are run on. This makes it easier to port
applications from one platform to another.

The MQI is described in detail in the MQSeries Application Programming Reference manual.

Time-independent applications

With message queuing, the exchange of messages between the sending and receiving programs is
time independent. This means that the sending and receiving applications are decoupled so that the
sender can continue processing without having to wait for the receiver to acknowledge the receipt of

the message. In fact, the target application does not even have to be running when the message is
sent. It can retrieve the message after it is started.

Message-driven processing

Applications can be automatically started by messages arriving on a queue using a mechanism
known as triggering. If necessaty, the applications can be stopped when the message or messages have
been processed.

Messages and queues

Messages and queues are the basic components of a message queuing system.
What messages are

A message is a string of bytes that has meaning to the applications that use it. Messages are used for
transferring information from one application to another (or to different parts of the same
application). The applications can be running on the same platform, or on different platforms.

MQSeries messages have two parts; the application data and a message descriptor. The content and
structure of the application data is defined by the application programs that use them. The message
descriptor identifies the message and contains other control information, such as the type of
message and the priority assigned to the message by the sending application.

The format of the message descriptor is defined by MQSeries for IRIX. For a complete description
of the message descriptor, see the MQSeries Application Programming Reference manual.

Message lengths

In MQSeries for IRIX, the maximum message length is 4MB (where 1MB equals 1 048 576 bytes).
In practice, the message length may be limited by:

The maximum message length defined for the receiving queue.

The maximum message length defined for the queue manager.

The maximum message length defined by either the sending or receiving application.
The amount of storage available for the message.

It may take several messages to send all the information that an application requires.
What queues are

A queue is a data structure that stores zero or more messages. The messages may be put on the
queue by applications or by a queue manager as part of its normal operation.

Each queue belongs to a queue manager, which is responsible for maintaining it. The queue manager
puts the messages it receives on the appropriate queues.

Applications send and receive messages using MQI calls. For example, one application can put a
message on a queue, and another application can retrieve the message from the same queue. The
sending application opens the queue for put operations by making an MQOPEN call. Then it issues
an MQPUT call to put the message onto that queue. When the receiving application opens the
same queue for gets, it can retrieve the message from the queue by issuing an MQGET call.

For more information about MQI calls, see the MQSeries Application Programming Reference manual.
Predefined and dynamic queues
Queues can be characterized by the way they are created:

Predefined queues are created by an administrator using the appropriate command set. For
example, the MQSC command DEFINE QLOCAL creates a predefined local queue.
Predefined queues are permanent; they exist independently of the applications that use them
and survive MQSeries for IRIX restarts.

Dynamic queugs are created when an application issues an open request specifying the name of
a model queue. The queue created is based on a template queue definition, which is the
model queue. You can create a model queue using the MQSC command DEFINE
QMODEL. The attributes of a model queue, for example the maximum number of
messages that can be stored on it, are inherited by any dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to be permanent
or temporary. Permanent queues survive application and queue manager restarts; temporary
queues can be lost or damaged by a restart.

Retrieving messages from queues

In MQSeries for IRIX, suitably authorized applications can retrieve messages from a queue
according to these retrieval algorithms:

First-in-first-out (FIFO).

Message priority, as defined in the message descriptor. Messages that have the same priority
are retrieved on a FIFO basis.

A program request for a specific message.

The MQOPEN request from the application determines the method used.

Objects

Many of the tasks described in this book involve manipulating MQSeries objects. In MQSeries for
IRIX, there are four different types of objects:

Queue managers, see "MQSeries queue managers".

Queues, see "MQSeries queues”.

Process definitions, see "Process definitions".

Channels, see "Channels".

Object names

Each instance of a queue manager is known by its name. This name must be unique within the
network of interconnected queue managers, so that one queue manager can unambiguously identify
the target queue manager to which any given message should be sent.

For the other types of objects, each object has a name associated with it and can be referenced in
MQSeries for IRIX by that name. These names must be unique within one queue manager and
object type. For example, you can have a queue and a process with the same name, but you cannot
have two queues with the same name.

In MQSeries, names can have a maximum of 48 characters, with the exception of thannels, that have
a maximum of 20 characters. For more information about names see "Names".

Managing objects

MQSeries provides commands for creating, altering, displaying, and deleting objects. These include:
MQSeries commands (MQSC), which can be typed in from a keyboard or read from a file.
Programmable Command Format (PCF) commands, which can be used in a program.

For more information, see Chapter 4. "Understanding administration command sets".

Object attributes

The properties of an object are defined by its attributes, some of which you can specity, others you
can only view. For example, the maximum message length that a queue can accommodate is defined
by its MaxMsgLength attribute; you can specify this attribute when you create a queue. The
DefinitionType attribute specifies how the queue was created; you can only display this attribute.

In MQSeries, there are two ways of referring to an attribute:
Using its PCF name, for example, MaxMsgLength.
Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the MQSC facility is an important
part of this book, you are more likely to see the MQSC name in examples than the PCF name of a
given attribute.

MQSeries queue managers

A queue manager provides queuing services to applications, and manages the queues that belong to
it. It ensures that:

Object attributes are changed according to the commands received.

Special events such as trigger events or instrumentation events are generated when the
appropriate conditions are met.

Messages ate put on the correct queue, as requested by the application making the MQPUT
call. The application is informed if this cannot be done, and an appropriate reason code is
given.

Each queue belongs to a single queue manager and is said to be a local queue to that queue manager.
The queue manager to which an application is connected is said to be the local queue manager for
that application. For the application, the queues that belong to its local queue manager are local
queues. A remote queue is simply a queue that belongs to another queue manager. A remote queue
manager is any queue manager, other than the local queue manager. A remote queue manager may
exist on a remote machine across the network or it may exist on the same machine as the local
queue manager. MQSeries for IRIX supports multiple queue managers on the same machine.

MQI calls

A queue manager object may be used in some MQI calls. For example, you can inquire about the
attributes of the queue manager object using the MQI call MQINQ.

Note: You cannot put messages on a queue manager object; messages are always put on queue
objects, not on queue Manager objects.

MQSeries queues

Queues are defined to MQSeries using the appropriate MQSC DEFINE command or the PCF
Create Queue command. The command specifies the type of queue and its attributes. For example,
a local queue object has attributes that specify what happens when applications reference that queue
in MQI calls. Examples of attributes are:

Whether applications can retrieve messages from the queue (GET enabled).
Whether applications can put messages on the queue (PUT enabled).
Whether access to the queue is exclusive to one application or shared between applications.

The maximum number of messages that can be stored on the queue at the same time
(maximum queue depth).

The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see the MQSeries Command Reference or the MQSeries
Programmable System Management manual.

Using queue objects

In MQSeries, there are four types of queue object. Each type of object can be manipulated by
MQSeries for IRIX commands and is associated with real queues in different ways:

1. A local queue object identifies a local queue belonging to the queue manager to which the
application is connected. All queues are local queues in the sense that each queue belongs to a
queue manager and, for that queue manager, the queue is a local queue.

2. A remote queue object identifies a queue belonging to another queue manager. This queue must be

defined as a local queue to that queue manager. The information you specify when you define a
remote queue object allows the local queue manager to find the remote queue manager, so that
any messages destined for the remote queue go to the correct queue manager.

You must also define a transmission queue and channels between the queue managers,
before applications can send messages to a queue on another queue manager.

3. An alias queue object allows applications to access a queue by referring to it indirectly in MQI
calls. When an alias queue name is used in an MQI call, the name is resolved to the name of
either a local or a remote queue at run time. This allows you to change the queues that
applications use without changing the application in any way--you merely change the alias queue
definition to reflect the name of the new queue to which the alias resolves.

An alias queue is not a queue, but an object that you can use to access another queue.

4. A model queue object defines a set of queue attributes that are used as a template for creating a
dynamic queue. Dynamic queues are created by the queue manager when an application issues
an MQOPEN request specifying a queue name that is the name of a model queue. The dynamic
queue that is created in this way is a local queue whose attributes are taken from the model
queue definition. The dynamic queue name can be specified by the application or the queue
manager can generate the name and return it to the application.

Dynamic queues defined in this way may be temporary queues, which do not survive
product restarts, or permanent queues, which do.

Specific local queues used by MQSeries

MQSeries uses some local queues for specific purposes related to its operation. You must define
them before MQSeries can use them.

Application queues

A queue that is used by an application (through the MQYI) is referred to as an application queue. This
can be a local queue on the queue manager to which an application is linked, or it can be a remote
queue that is owned by another queue manager.

Applications can put messages on local or remote queues. However, they can only get messages
from a local queue.

Initiation queues

Initiation queues are queues that are used in triggering. A queue manager puts a trigger message on an
initiation queue when a trigger event occurs. A trigger event is a logical combination of conditions that
is detected by a queue manager. For example, a trigger event may be generated when the number of
messages on a queue reaches a predefined depth. This event causes the queue manager to put a
trigger message on a specified initiation queue. This trigger message is retrieved by a trigger monitor, a
special application that monitors an initiation queue. The trigger monitor then starts up the
application program that was specified in the trigger message.

If a queue manager is to use triggering, at least one initiation queue must be defined for that queue
manager.

n

See "Managing objects for triggering", and runmqtrm (Start trigger monitor). For more information
about triggering, see the MQSeries Application Programming Guide.

Transmission queues

A transmission queue temporarily stores messages that are destined for a remote queue manager. You
must define at least one transmission queue for each remote queue manager to which the local
queue manager is to send messages directly. These queues are also used in remote administration;
see "Remote administration". For information about the use of transmission queues in distributed

queuing, see the MQSeries Distributed Queuing Guide.

Dead-letter queues

A dead-letter queue stores messages that cannot be routed to their correct destinations. This occurs
when, for example, the destination queue is full. The supplied dead-letter queue is called
SYSTEM.DEAD.LETTER.QUEUE. These queues are also referred to as undelivered-message
queues on other platforms.

For distributed queuing, you should define a dead-letter queue on each queue manager involved.
Command queues

The command queue, named SYSTEM.ADMIN.COMMAND.QUEUE, is a local queue to which
suitably authorized applications can send MQSeries for IRIX commands for processing. These
commands are then retrieved by an MQSeries component called the command server. The
command server validates the commands, passes the valid ones on for processing by the queue
manager, and returns any responses to the appropriate reply-to queue.

You can define a command queue for each queue manager by running the supplied command file
amgscoma. tst.

Reply-to queues

When an application sends a request message, the application that receives the message can send
back a reply message to the sending application. This message is put on a queue, called a reply-to
queue, which is normally a local queue to the sending application. The name of the reply-to queue is
specified by the sending application as part of the message descriptor.

Event queues

MQSeries for IRIX supports instrumentation events, which can be used to monitor queue managers
independently of MQI applications. Examples of conditions generating instrumentation events
include:

An application attempts to put a message on a queue that is not available or does not exist.
A queue becomes full.
A channel is started.

When an instrumentation event occurs, the queue manager puts an event message on an event
queue. This message can then be read by a monitoring application which may inform an

administrator or initiate some remedial action if the event indicates a problem.

Note: Trigger events are quite different from instrumentation events in that trigger events are
not caused by the same conditions, and do not generate event messages.

For more information about instrumentation events, see the MQSeries Programmable System
Management manual.

Process definitions

A process definition object defines an application that is to be started in response to a trigger event on an
MQSeries for IRIX queue manager. See "Initiation queues" for more information.

The process definition attributes include the application ID, the application type, and data specific to
the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create Process to create a
process definition.

Channels

Channels are objects that provide a communication path from one queue manager to anothet.
Channels are used in distributed message queuing to move messages from one queue manager to
another. They shield applications from the underlying communications protocols. The queue
managers may exist on the same, or different, platforms. For queue managers to communicate with
one another, you must define one channel object at the queue manager that is to send messages, and
another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see the MQSegries Distributed Queuing Guide, and
also "Preparing channels and transmission queues for remote administration".

System default objects

The system default objects are a set of object definitions that can be created for each queue manager,
using the command file amgscoma. tst, which is supplied with MQSeries. You can copy, and
modify any of these object definitions for use in applications at your installation. Default object
names have the stem SYSTEM.DEF; for example, the default local queue is
SYSTEM.DEFAULT.LOCAL.QUEUE,; the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of these names are
required.

When you define an object, any attributes that you do not specify explicitly are copied from the
appropriate default object. For example, if you define a local queue, the attributes you do not specify
are taken from the default queue SYSTEM.DEFAULT.LOCAL.QUEUE.

Administration

In MQSeties, you carry out administration tasks by issuing commands. Three command sets are
provided, depending on which tasks you want to perform and how you want to perform them. The
command sets ate described in Chapter 4. "Understanding administration command sets".
Administration tasks include:

Starting and stopping queue managers.
Creating objects, particularly queues, for applications.

Working with channels to create communication paths to queue managers on other (remote)
systems. This is described in detail in the MQSeries Distributed Queuing Guide.

Local and remote administration

Local administration means carrying out administration tasks on any queue managers you have
defined on your local system. You can access other systems, for example through the TCP/IP
terminal emulation program telnet, and carry out administration there. In MQSeties, you can
consider this as local administration because no channels are involved, that is, the communication is
managed by the operating system.

MQSeties supports administration from a single point through what is known as remote administration.
This allows you to issue commands from your local system that are processed on another system.
You do not have to log on to that system, although you do need to have the appropriate channels
defined. The queue manager and command server on the target system must be running. For
example, you can issue a remote command to change a queue definition on a remote queue
manager.

Some commands cannot be issued in this way, in particular, creating or starting queue managers and
starting command servers. To perform this type of task, you must either log onto the remote system
and issue the commands from there or create a process that can issue the commands for you.

Clients and servers

MQSeries for IRIX supports client-server configurations for MQI applications.

An MQI client is a part of the MQSeries product that is installed on a machine to accept MQI calls
from applications and pass them to an MQI server machine. There they are processed by a queue
manager. Typically, the client and server reside on different machines but they can also exist on the
same machine.

An MQI server is a queue manager that provides queuing services to one or more clients. All the
MQSeries objects, for example queues, exist only on the queue manager machine, that is, on the
MQI server machine. A server can support normal local MQI applications as well.

The difference between an MQI server and an ordinary queue manager is that a server has a
dedicated communications link with each client. For more information about creating channels for

clients and servers, see the MQSeries Distributed Queuing Guide

You can run MQI clients from all client systems.
MQI applications in a client-server environment

When linked to a server, client MQI applications can issue MQI calls in the same way as local
applications. The client application issues an MQCONN call to connect to a specified queue
manager. Any additional MQI calls that specify the connection handle returned from the connect
request are then processed by this queue manager. You must link your applications to the
appropriate client libraries. See the MQSeries Application Programming Guide for further information.

Extending queue manager facilities

The facilities provided by a queue manager can be extended by:
User exits

Installable services
User exits

User exits provide a mechanism for users to insert their own code into a queue manager function.
Two types of user exits are supported:

1. Channel exits, which change the way that channels operate.

2. Data conversion exits, which create source code fragments that can be put into application
programs to convert data from one format to another.

Both types of exit are related to distributed queueing. For more information about these exits and
how to use them, see the MQSeries Distributed Queuing Guide.

Installable services

Installable services are more extensive than exits in that they have formalized interfaces (an API)
with multiple entry points.

An implementation of an installable service is called a Service component. You can use the components
supplied with the product, or you can write your own component to perform the functions that you
require. Currently, the following installable services are provided:

The authorization service, which allows you to build your own security facility. The default
service component that implements the service is the Object Authority Manager (OAM),
which is supplied with the product. By default, the OAM is active, that is, you do not have to
do anything to configure it. You can use the authorization service interface to create other
components to replace or augment the OAM.

The name service, which allows queue managers to share queues.

See the MQSeries Programmable System Management manual.

Security

Authorization for using MQI calls, commands, and access to objects is provided by the Object
Authority Manager (OAM), which by default is enabled. Access to MQSeries entities is controlled
through MQSeries for IRIX user groups and the OAM. A command line interface is provided to
enable administrators to grant or revoke authorizations as required.

Chapter 2. Installing MQSeries for IRIX

This chapter tells you how to install MQSeries for IRIX and how to verify that your installation has
been successful.

Note

Throughout this chapter and the remainder of the book, the name mgmtop has been used to
represent the name of the installation directory.

For MQSeries for IRIX, the name of the actual directory is Zopt/mgm

Components you can install

When you install MQSeries for IRIX you can choose which components to install. The components
are as follows:

Component Purpose
Server Support for servers. Requires the base product to be installed.
Man Man pages for control commands, MQI calls, and MQSC
commands.
IRIX client Support for IRIX clients. To install a client, the code must be

copied to the client machine or machines.

Desktop client Support for OS/2, DOS, and Windows 3.1 clients with an
MQSeries for IRIX server. To install a client, the relevant code
must be copied to the client machine or machines.

Samples Samples

French MQSeries messages - French
German MQSeries messages - German
Spanish MQSeries messages - Spanish

Typically a particular IRIX machine is designated as either an MQSeries client or server. This means
that in most cases you install either the client component or the server component.

Note: The "base" product is automatically installed.

Installation requirements

The installation requirements depend on which components you install and how much working
space you need. This, in turn, depends on the number of queues that you use, the number and size
of the messages on the queues, and whether the messages are persistent or not. You also require
archiving capacity on disk, tape, or other media.

Disk storage

These are the approximate storage requirements:

Server A minimum of 10MB of disk space must be available for the product
code and data in the filesystem containing the Zopt/mgm directory.

An additional 20MB of disk space must be available for MQSeries
objects and data on the /var/mgm filesystem.

Clients If you are installing client code, the storage required on the client
machines is:

IRIX client

1.5MB on the IRIX machine.
DOS

240KB on the DOS machin
0S/2

1.2MB on the OS/2 machineWindows 3.1552KB on the
Windows machine

Working data for MQSeries for IRIX is stored by default in /var/mgm. See Figure 34 for the
directory structure.

Note: For added confidence in the integrity of your data, you are strongly advised to put your
logs onto a different physical drive from the one that you use for the queues.

Preparing for installation

This section guides you through some of the steps you must perform before you install MQSeries
for IRIX.

Before installation...

Before you can install MQSeries for IRIX you:
Must create a group with the name mgm
Must create a user ID with the name mgm.

Are recommended to create and mount a /var/mgm filesystem, or /var/mam,
/var/mgm/logs, and /var/mgm/errors filesystems.

The filesystems for MQSeries data Must be on a local filesystem that supports long names,
for example, efs or xfs.

After installation, this user ID (mgm) owns the directories and files that contain the resources
associated with the product. This group and user must be defined for any machine on which the
MQSeries software is to be installed, whether the machine is a client or a server machine.

If you want to run any administration commands, for example, Crtmgm (create queue manager) or
strmgm (start queue manager), your user ID must be a member of group mgm.

For stand-alone machines, you can create the new user and group IDs locally. For machines
administered in a network information services (NIS) domain, you can create the user and group
IDs on the NIS master server machine.

Installation

The MQSeties product is contained in the root directory (/) of the CD-ROM, and the product
documentation (postscript and Adobe Acrobat) files are contained in the /docs subdirectory.

Notes: 1. The manuals take up considerable disk space and are therefore not installed by the
installation program. The user should copy required documentation files as needed.

2. 'The filenames are listed in "Directories that exist after installation"

To install, carry out the following procedure:

Installing Software From a Local CD-ROM Drive

1.
2.

Insert the CD in the CD-ROM drive.
Double-click the CD drive icon to open the Software Manager.

To read the release notes, see "Viewing Release Notes From a Local CD" later in this section.
Before installing software, it is recommended that you review the release notes because some patches that are not
automatically installed are required.

To install all products, mark both Upgrade Products and New Products for installation;
otherwise press Customize Installation and mark the desired products.

Click the Start button.
When the installation is complete, choose "Quit" from the File menu.

Eject the CD from the drive

With the CD drive icon selected, hold down the right mouse button and select "Eject
CDROM" from the desktop menu.

For more information about software installation, including how to customize your installation, see the
online Personal System Administration Guide. This guide is located in the IRIS Insight Library, which you can
find by selecting Online Books from the Help toolchest.

Installing Software From a Remote CD-ROM Drive

1.
2.

8.
9.

Insert the CD in the remote CD-ROM drive.
Select Software Manager from the System toolchest

In the Available Software field, type the remote system's hostname, a colon(:), and
"/CDROM/dist". For example, type:

devhost:/CDROM/dist
Click the Lookup button.

To read the release notes, see "Viewing Release Notes From a Remote CD" later in this section.
Before installing software, it is recommended that you review the release notes because some patches that are not
automatically installed are required.

To install all products, mark both Upgrade Products and New Products for installation;
otherwise press Customize Installation and mark the desired products.

Click the Start button.

When the installation is complete, choose "Quit" from the File menu.

10. Eject the CD from the drive

With the CD drive icon selected, hold down the right mouse button and select "Eject
CDROM" from the desktop menu.

For more information about software installation, including how to customize your installation, see the
online Personal System Administration Guide. This guide is located in the IRIS Insight Library, which you can
find by selecting Online Books from the Help toolchest.

Installing Software on a Non-Graphics System

If you are using an ASCII terminal or shell window, you can use the Inst(1M) command to install the
software from a local or remote CD. See IRIX Admin: Software Installation and Licensing.

Viewing Release Notes from a Local CD
(with Indigo magic Desktop)

After the CD is inserted in the CD drive, follow these steps to access the release notes.

1.

Software Manager should be displayed and the "Available Software" field set to
"/CDROM/dist"/

Click the Customize Installation button.

After the Software Inventory is displayed, highlight the product name whose release notes
you wish to read by clicking only once on the product name.

Select "Release Notes" from the Selected menu. This displays the release notes in a
window labeled grelnotes.

To print the release notes, select "Print" form the grelnotes File menu.

To read the release notes of another product in the Software Inventory, exit the release
notes of the currently displayed product and repeat steps 3 and 4.

Viewing Release Notes from a Remote
(with Indigo Magic Desktop)

After the CD is inserted into a remote CD drive, follow these steps to access the release notes.

1.

Software Manager should be displayed and the "Available Software" field set to the
remote system's hostname, a colon(:), and "/CDROM/dist"/. For example, type:

devhost:/CDROM/dist
Click the Customize Installation button.

After the Software Inventory is displayed, highlight the product name whose release notes
you wish to read by clicking only once on the product name.

4. Select "Release Notes" from the Selected menu. This displays the release notes in a

window labeled grelnotes.
5. To print the release notes, select "Print" form the grelnotes File menu.
6. To read the release notes of another product in the Software Inventory, exit the release

notes of the currently displayed product and repeat steps 3 and 4.

1. mount the CD-ROM as the /cdrom directory.
2. use the “/usr/sbin/swmgr” program, and carry out the following procedure:
3. Perform a.

4. When you are prompted for which packages are to be installed, select the ones you require. If
you want to install the entire MQSeries product, select all.

5. Press the Enter key.

1.

Notes: 1. If you have previously installed MQQSeries on your system, you need to remove the
product using the pkgrm program.

2. If the product is present, but not installed correctly, you may need to manually delete
the files and directories contained in:
/var/mgm
/opt/mgm

Kernel configuration

MQSeries makes use of semaphores and shared memory and the default kernel configuration is not
adequate.

In particular, the default number of semaphores and shared memory segments are Not sufficient to
support MQSeries.

If you attempt to use MQSeries without increasing SEMMNI, the number of semaphores, the queue
manager fails and produces a First Failure Support Technology (FEST) file. This file indicates the
error “’No space left on device’ from semget” in Comment].

If the value of shmmax is too low, the error “’Invalid argument’ from shmget” will be received.
If the value of sshmseg is too low, the error ““Too many open files’ from shmat” will be received..

For more information on viewing FFST files see "How to examine the FFSTs".

The following are the minimum recommended additional amounts for MQSeries (add the values to
those you already have defined):

IRIX 6.2, 6.3 and 6.4:

semmni 240
semmns 300
semmnu 200
semmsl 256
semopm 256
semume 256
shmmnu 512
sshmseg 512
IRIX 6.5:

semmni 240
semmsl 256
semopm 256
shmmnu 512
sshmseg 512

Once you have made the changes, you must rebuild the kernel and restart the system.

Note: A heavily loaded/configured Queue Manager many require resources in excess of those
recommneded above.

Before reconfiguring the ketnel, make a backup of your unix kernel (i.e. cp /unix /unix.old)

To change the kernel tunables, use systune in interactive mode (i.e. systune —i). Systune will isse a
prompt (systune->). Enter the parameter name you wish to change followed by a space and the
value you wish to assign to the parameter (e.g. systune->semmni 300) . Press enter. A ‘y’ response is
required in response to the message:

“Do you really want to change <parameter> to <value> (<hex value>)? (y/n)

When you have completed you modifications to the tunables, enter ““/etc/autoconfig —f” to rebuild
the kernel with the new values and reboot.

Directories that exist after installation

When you install MQSeries for IRIX, the following directories are created or added to the product
files:

For information about the other MQSeries directories see Figure 34.
When you install the product, you also receive:

A set of man pages for the following entities:

- MQSeries control commands

- MQSeries commands (MQSC)

- Message Queue Interface (MQI) calls.

A set of MQSeries books is provided in PostScript and Adobe Acrobat formats. These
enable you to print the books on a PostScript printer, or view the book with a suitable
viewer. The filenames of the files and the names of the corresponding books are:

Filename Book

AppPrgGde MQSeries Application Programming Guide

AppPrgRef MQSeries Application Programming Reference

Clients MQSeries Clients

CmdRef MQSeries Command Reference

DistQGde MQSeries Distributed Queuing Guide

PrgSysMgmt MQSeries Programmable System Management
IRIX_SMG MQSeries for IRIX Version 2 System Management Guide

Translated messages

Messages in US English are always available. If you require another of the languages that is
supported by MQSeries for IRIX Version 2, you must ensure that your NLSPATH environment
variable includes the appropriate directory.

For example:

export LANG=german
export NLSPATH=/usr/lib/locale/%L/LC_MESSAGES/%N

Figure 3. Default directory structure for the product files

Imqmtop —

— bin/
— inc/
— lib/

—— samp/——bin/

— 0s2_client/ —

— dos_client/ —

L dig/

— bin/
F— gl |
— inc/
— lib/
— msg/
— samp/
— bin/
— inc/
— lib/
— msg/

— samp/

— win_client/ —71— bin/

— dllf

inc/

— lib/

msg/

samp/

— man/ —

— man 1

—— man 3

Verifying your installation

When you have installed the MQSeries for IRIX base, server and samples components, you should
verify that the installation has completed successfully. The steps below tell you how to do this using
the MQSC command file amgscoma. tst. The commands in this file initialize your MQSeries
system and set up the default objects that your system requires. The objects that angscoma. tst
creates for you are listed in Appendix B. "System defaults".

When you have completed the verification, you should delete the queue manager to leave a 'clean’
system, that is, a system with no objects, including queue managers, defined.

Note: Deleting the queue manager does not delete the installation. You can, therefore, use this
procedure even if it has been run before, by you or someone else.

Follow these steps to verify your installation
The commands shown here are case-sensitive; type each command exactly as you see it.

These instructions assume that you are creating a queue manager called QUNAME. If you are creating a
different queue manager, replace each occurrence of QUNAME with the chosen name in the following
steps. Remember that a queue manager name must be unique within your network.

1. Create a queue manager called QMNAME using this command:

crtmgm -q QMNAME

Notes:
1. The queue manager name is case-sensitive.

2. The -q flag denotes that this is the default queue manager. It is not essential to have a
default queue manager, but it is recommended practice to have one.

3. Tor a detailed description of the Crtmgm command and options see crtmgm (Create

ucuc manager).

2. Start the queue manager using this command:

strmgm QMNAME

The strmgm command returns control when the queue manager has started and is ready to
accept connect requests.

3. Create the default objects for this queue manager by typing this command:

runmgsc QMNAME < mgmtop/samp/amgscoma.tst > defobj.out

The file amgscoma. tst contains a series of MQSC commands that define the system default
objects for the queue manager QMNAME. The output from the MQSC commands is sent
to a report file defobj . out. Examine the last two lines of the output file to verify that all
commands were processed without error. If errors have occurred, you should examine the
rest of this file, checking the confirmation messages for each MQSC command. For
example:

AMQ8006 MQSeries queue created

If no errors are indicated, all commands were successful and you have verified that your
installation was successful.

You may wish to modify a copy of amgscoma. tst to meet your own requirements for
system defaults. If you do, you may have to reinstall the toolkit component of the product
later.

4. Stop the queue manager using the command:

endmgm QMNAME

5. Delete the queue manager using the command:

ditmgm QMNAME

This command deletes the queue manager and its associated objects including the system
default objects that you created in step 3.

If your installation was not a success?

If any of the commands, including those run from the file amgscoma. tst, were not successful, look
at the following:

Did you type in the commands correctly? Tty running one or more of the commands
again. Remember that these commands and most parameters are case-sensitive. If you create
a queue manager with an upper-case name, you must specify this as an upper-case name in
any commands referring to this queue manager. For example, if you create a queue manager
called QMNAME, you cannot use 'qmname' or 'QMname’.

Do you have enough disk space or memory to run the verification? Check any error
messages for an indication of this. If error message AMQ7065 Insufficient space on

disk is returned, use the df -k command to display the cutrent size of the /var directory. If
there is less than 15 MB of free space, increase the size of your /var file system.

Do the required directories for the installed product exist? Check these, and if they do
not exist, attempt to reinstall.

Do you have the required authority to run the commands? Check that your user ID is a
member of group mgm. If you are using /etc/logingroup, ensure that your ID is listed in
there as belonging to the mgm group.

Installing clients

When you install MQSeries for IRIX, the files for the following clients are also provided. They are:
0S/2
DOS
Windows 3.1

You can install MQSeries client software directly from CD-ROM, or from the LAN.

To install client software, install the component on an MQSeries for IRIX machine in the usual way
and then copy the client files to the build and run environment on the client platform.

The required files are located in these directories:

The DOS files are in these directories:

mgmtop/dos_client/bin
mgmtop/dos_client/inc
mgmtop/dos_client/lib
mgmtop/dos_client/msg
mgmtop/dos_client/samp

The OS/2 files are in these directories:

mgmtop/os2_client/bin
mgmtop/os2_client/dll
mgmtop/os2_client/inc
mgmtop/os2_client/lib
mgmtop/os2_client/msg
mgmtop/os2_client/samp

The Windows 3.1 files are in these directories:

mgmtop/win_client/bin
mgmtop/win_client/dll
mgmtop/win_client/inc
mgmtop/win_client/lib
mgmtop/win_client/msg
mgmtop/win_client/samp

Further information about clients can be found in the MQSeries Clients book.

Chapter 3. Customizing your system

This chapter lists the tasks involved in customizing a queue manager to meet your requirements.
Do I need to customize?

When you have installed the product, you can use it without having to customize it in any way.
The default configuration provides all the facilities you need to build a working system that can
participate in message queuing with other MQSeries systems.

However, you must have set up the required IRIX user and group IDs. See "Specifying user
roups for security administration" for more information.

When do I customize?

Some customization tasks must be performed before you create a queue manager; others require
you to stop and restart the queue manager. Check each task in turn, to see when you need to
perform it.

What are configuration files?

There are two types of configuration files. One contains information about the way your
MQSeries system is set up or configured; this file is created when MQSeries is installed. The
other contains information about the attributes of an individual queue manager. This file is
generated when a queue manager is created.

"Things you can customize" specifies which of these files to modify for each relevant
configuration task. For more information about the files themselves, see Chapter 13.
"Understanding configuration files".

What do I do now?

Check each item in the list shown in "Things you can customize" to see if any of the things
listed apply to your enterprise. If none of the items apply, you can ignore this chapter.

Things you can customize

Read through the following list to determine if any of the following aspects apply to systems within
your enterprise:

Configuring an authorization service component,

Enabling communications support, see topic "Enabling communications support".

Implementing data conversion, see topic "Implementing data conversion".

'

Defining the default and system objects, see topic "Defining the default and system objects".

Specifying a default prefix for queue manager objects, see topic "Specifving prefixes for
queue manager objects".

Specifying log parameters, see topic "Specifving logging parameters".
Configuring a queue manager, see topic "Configuring a queue manager".

User groups for security administration, see topic "Specifying user groups for security
administration".

The terms in this list are explained in the following sections.

Configuring an authorization service component

This task is not required on your first pass through this book.

By default, authority checking is turned on.

The authorization service supports authority checking on commands and MQI calls for the user ID
associated with the command or call. The names of the authorization service and the component
that implements the service are specified in the queue manager configuration file (qm. ini).

By default, the active authorization service component is the Object Authority Manager (OAM),
which is supplied with the product.

Changing the authorization service component

You can edit the configuration file for a specific queue manager to:
Remove the OAM and therefore all security checking.
Replace the OAM with a user-written authorization service component.
Add a user-written authorization service component to augment the OAM.

These tasks are not required, unless you have specific security requirements that cannot be
accommodated by the OAM.

For more information about the queue manager configuration file, see "Queue manager
configuration file". For information about writing your own authorization service component, refer
to the MQSeries Programmable System Management manual.

Note: You can change the configuration file gm. ini after you have created and started the queue
manager to which it relates. This has no effect until the queue manager is stopped and restarted.
However, you should not create or change objects when the authorization service is off and then
turn authorization back on again. If you do, you may compromise the security of your system.

Enabling communications support

This task is required before you can communicate with other queue
managers.

You must stop and restart the queue manager to perform this task.

By default, the communications protocols are not defined.

You must specify the name of the communications protocol and other parameters that are to be
used for communication with other queue managers. This includes the LAN protocol name, which
must be:

TCP/IP
Note: SNA LU6.2 is not supported on MQSeries for IRIX.

Implementing data conversion

This task is not normally required on your first pass through this book.

You do not need data conversion to communicate between similar nodes.

If you are using MQSeries with systems that have different encodings, you need to use a data
conversion exit. The conversion of messages is based on message formats--specified in the message
descriptor--and all message queuing formats are converted automatically. However, user formats are
not converted so that even ASCII-to-EBCDIC conversion must be done using an exit (one per
format).

You can use the supplied conversion exit utility if you wish to communicate with queue managers
using MQI calls or remote commands, where the systems involved have formats outside those
supported by MQSeries. The conversion exit utility allows you to create the required conversions as
C source code. Refer to the MQSeries Distributed Queuing Guide for more information. You can leave
this task until run time. However, if you do, you may not be able to communicate between the two
different machines until then.

Supported codesets

MQSeries for IRIX supports most of the codesets used by the locales that are provided as standard
on IRIX.

Details of the supported codesets are given in Appendix E. "Support for different codesets on
MQSeries for IRIX".

Adding information about coded character sets on IRIX

MQSeries stores information about the coded character sets that your operating system supports. If
future versions of your operating system support additional coded character sets, you may need to
update the information that MQSeries stores.

To update coded character set information edit the file ccsid.tbl in the IRIX directory
/var/mgm/conv/table.

Example of ccsid.tbl

Licensed Materials - Property of 1BM

H

(C) Copyright IBM Corp. 1994, 1995

i

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with 1BM Corp.
#

This file is used to add newly supported CCSID values to the system.
To be used the file should be placed in the /var/mgm/conv/table

directory. CCSID and encoding values van be found in the CDRA

documentation (SC09-1390). For mixed CCSIDs the "SBCS part" field
should be set to the SBCS CCSID, otherwise this field should be O.
The codeset name is the name by which this CCSID is known on this
operating system.

#

The File can also be used to modify data stored for existing CCSIDs.
i

Decimal Hexadecimal Decimal Codeset

CCSID Encoding system SBCS part name

850 0x2100 0 ib850

437 0x2100 0 1b437

Defining the default and system objects

This task is required, but is part of the standard administration procedures,
see Chapter 5. "Managing queue managers”.

MQSeries for IRIX provides an MQSC command file that you can use to set up the default and
system objects. Typically, when you define an object, you do not define all the possible attributes.
The ones you do not specify are inherited from the corresponding default object. The supplied
command file amgscoma. tst, when used with the runmMQsc command, creates a set of default and

system objects. See "Running the supplied MQSC command files" for information about running

this sample.

If you change the attributes of the default object, any objects of the same type you create inherit the
new values.

Do not attempt this if you are not familiar with the different commands and command sets
provided on MQSeries for IRTX.

Modifying the amgscoma.tst command file
You should consider modifying the command file amgscoma. tst if, for example:

You have a large number of objects to create that have similar values that are not the same
as those of the supplied default amgscoma. tst values.

You have some specific requirements or limitations on the size of certain resources.

To modify amgscoma. tst, make a backup copy, make the required changes, and then use the new
version of the file to create the default objects. See also "Creating the default and system objects".

Specifying prefixes for queue manager objects

This task is not normally required on your first pass through this book.
By default, the prefixes are already set.

You should not perform this task if you have existing MQSeries objects.

The prefix for queue manager objects specifies the first part of the path to the files associated with a
queue manager. You specify this when you install the product. Then, when you create any objects,
this prefix is the first part of the path to the files associated with those objects. The prefix is
specified in the QueueManager stanza in the MQSeries configuration file, mgs. ini.

If you change this prefix, all the objects are created at the locations specified by the new prefix.
Unless you change it, the default prefix for queue manager objects is: /var/mgm.

Warning!

To modify the locations of queue manager objects, you must update the =~ QueueManager stanza
in mgs. ini file before you create any objects. Do not change this stanza if you have already
created objects for this queue manager.

Specifying a default prefix

You can specify a default prefix, so that when you create a new queue manager its prefix is taken
from the default. The default prefix is specified in the Defaul tPrefix stanza in the mgs. ini file.
Unless you have changed it, the default prefix is: /var/mgm.

Specifying logging parameters

This task is not normally required on your first pass through this book.
By default, the logging parameters are adequate.

You must stop and restart the queue manager to perform this task.

The logging parameters determine the type and size of the logs your system will use. These are
specified in the configuration files mgs. ini and gm. ini, which are read when a queue manager is
started. See "Log configuration stanzas" for more information.

Note: User ID mgm and group mgm must have full authorities to the log files. If you change the
locations of these files, you must give these authorities yourself. This is not required if
the logs files are in the default locations supplied with the product.

Sharing queues using the name service

This task is not normally required on your first pass through this book.

You must stop and restart the queue manager to perform this task.

The name service is an installable service that enables an application to access a queue on another
queue manager as if it were a local queue. For MQI requests, applications can then treat this queue
like a local queue, without being aware of its exact location.

The service name and the component to be invoked for that service are specified by stanzas in the
gm. ini configuration file. By default, this service is not active. For information about configuration
file stanzas and writing your own name service, see MQSeries Programmable System Management manual.

Configuring a queue manager

This task is required, but is part of the standard administration procedures,
see Chapter 5. ""Managing queue managers".

When you create a queue manager, using the Crtmgm command, you can specify certain properties
for that queue manager. For example, you can specify the name of the dead-letter queue, and the
default transmission queue.

Once you have created a queue manager, you may need to modify its properties. For more
information, see "Guidelines for creating queue managers" and Chapter 13. "Understanding
configuration files".

Specifying user groups for security administration

You must perform this task before you install the queue manager.

You must create the user and group ID mgm before you install the product. (You should have already
done this.) See "Preparing for installation" for more information.

At this stage, you should also consider creating groups for user IDs for applications and
administrators. You can, however, perform this task at any time.

Chapter 4. Understanding administration
command sets

Read this chapter for an overview of the different methods that you can use to perform system
administration tasks on MQSeries objects. This chapter also helps you to understand the different
methods and when each should be used.

Administration tasks include creating, starting, altering, viewing, stopping, and deleting MQSeries
objects, that is, queue managers, queues, processes, and channels. To perform these tasks, you must
select the appropriate command from one of the supplied command sets.

MQSeries for IRIX provides three command sets for invoking administration tasks:
Control commands
MQSC commands
PCF commands

This chapter describes the command sets that are available and provides a summary of the different
commands in "Comparing command sets".

Control commands

Control commands fall into three categories:

Queue manager commands, including commands for creating, starting, stopping, and deleting
queue managers and command servers.

Channel commands, including commands for starting and ending channels and channel
initiators.

Utility commands, including commands associated with:

- Running MQSC commands.

- Conversion exits.

- Authority management.

- Recording and recovering media images of queue manager resources.
- Displaying and resolving transactions.

- Trigger monitors.

- Displaying the file names of MQSeries objects.
Using control commands

You type in control commands in an IRIX shell window. Control commands are case-sensitive,
including the command name, the flags, and any arguments. For example, in the command:

crtmgm -u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

The command name is crtmgm not CRTMQM
The flag is -u not -U
The dead-letter queue is SYSTEM.DEAD . LETTER.QUEUE

The argument is specified as jupiter.queue.manager; this is different from
JUPITER.queue.manager.

Therefore, take care to type the commands exactly as you see them in the examples.

Chapter 15. "MQSeries control commands" describes the syntax and purpose of each command.

MQSeries commands (MQSC)

You use the MQSeries (MQSC) commands to manage queue manager objects, including the queue
manager itself, channels, queues, and process definitions. For example, there are commands to
define, alter, display, and delete a specified queue.

When you display a queue, using the DISPLAY QUEUE command, you display the queue attributes.
For example, the MAXMSGL attribute specifies the maximum length of a message that can be put
on the queue. The command does not show you the messages on the queue.

MQSC commands are available on other platforms including OS/2, AS/400, and MVS/ESA.

These commands are summarized in "Comparing command sets". For detailed information about
each MQSC command, see MQSeries Command Reference.

Running MQSC commands

You run MQSC commands by invoking the control command runmasc from an IRIX shell
prompt. You can run MQSC commands:

Interactively by typing them at the keyboard. See "Using the MQSC facility interactively".

As a sequence of commands from an ASCII text file. See "Running MQSC commands from
text files"

You can run the runma@sc command in three modes, depending on the flags set on the command:

Verification mode, where the MQSC commands are verified on a local queue managet, they are
not actually run.

Direct mode, where the MQSC commands ate run on a local queue manager.
Indirect mode, where the MQSC commands are run on a remote queue manager.

For more information about using the MQSC facility and text files, see "Using the MQSC facility
interactively". For more information about the runmaQsc command, see runmgsc (Run MQSeries

commands).

PCF commands

The purpose of the MQSeries programmable command format (PCF) commands is to allow
administration tasks to be programmed into an administration program. In this way you can create
queues and process definitions, and change queue managers, from a program. In fact, PCF
commands cover the same range of functions that are provided by the MQSC facility. You can
therefore write a program to issue PCF commands to any queue manager in the network from a
single node. In this way, you can both centralize and automate administration tasks.

Each PCF command is a data structure that is embedded in the application data part of an MQSeries
message. Each command is sent to the target queue manager using the MQI function MQPUT in
the same way as any other message. The command server on the queue manager receiving the
message interprets it as a command message and runs the command. To get the replies, the
application issues an MQGET call and the teply data is returned in another data structure. The
application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text format that
you can read.

Briefly, these are some of the things the application programmer must specify to create a PCF
command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:
Message type specifies a management request.
Message format specifies administration commands.
Application data
Contains the PCF message including the PCF header, in which:
The PCF message type specifies command.
The command identifier specifies the command, for example, Change Queue.

For a complete description of the PCF data structures and how to implement them, see the MQSeries

Programmable System Management manual.

Attributes in MQSC and PCFs

Object attributes specified in MQSC are written in upper-case, for example RQOMNAME, although

they are not case-sensitive. These names are limited to 8 characters so that some attributes, for

example QDPHIEV] are not easy to guess the meaning of. Objects attributes in PCF are written in
italics, and are not limited to 8 characters, and are therefore easier to read. The PCF equivalent of

RQMNAME, is RemoteQMgrName and of QDPHIEV is QDepthHighEvent.

Escape PCFs

Escape PCFs are PCF commands that contain MQSC commands within the message text. You can
use PCFs to send commands to a remote queue manager. For more information about using escape

PCFs, see the MQSeries Programmable System Management manual.

Comparing command sets

The following tables compare the facilities available from the different administration command

sets.

Note: Only MQSC commands that apply to IRIX are shown.

Figure 4. Commands for queue manager administration

PCF MQSC Control

Change Queue Manager ALTER QMGR -

(Create queue manager)” - crtmqgm

(Delete queue manager)” - dltmgm
[nquire Queue Manager DISPLAY QMGR -

(Stop queue manager)’ - endmgm

Ping Queue Manager PING QMGR -

(Start queue manager) - strmqm

Note: © Not available as PCF commands.

Figure 5. Commands for command server administration

Description Control
Display command server dspmqcsv
Start command server strmqcsv
Stop command server endmgqcsv

Note: Functions in this group are available only as control commands. There are no equivalent
MQSC or PCF commands in this group.

Figure 6. Commands for queue administration

PCF MQSC
Change Queue ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL
ALTER QREMOTE
Clear Queue CLEAR QUEUE
Copy Queue DEFINE QLOCAL(x) LIKE(y)

DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

Create Queue DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL
DEFINE QREMOTE

Delete Queue DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL
DELETE QREMOTE

Inquire Queue DISPLAY QUEUE

Inquire Queue Names DISPLAY QUEUE

Note: There are no equivalent control commands in this group.

Figure 7. Commands for process administration

PCF

MQSC

Change Process

ALTER PROCESS

Copy Process DEFINE PROCESS(x) LIKE(y)
Create Process DEFINE PROCESS
Delete Process DELETE PROCESS
Inquire Process DISPLAY PROCESS
Inquire Process Names DISPLAY PROCESS

Note: There are no equivalent control commands in this group.

Figure 8. Commands for channel administration

PCF MQSC Control
Change Channel ALTER CHANNEL -
Copy Channel DEFINE CHANNEL(x) LIKE(y) |
Create Channel DEFINE CHANNEL -
Delete Channel DELETE CHANNEL -
Inquire Channel DISPLAY CHANNEL -
Inquire Channel Names DISPLAY CHANNEL -
Ping Channel PING CHANNEL -
Reset Channel RESET CHANNEL -
Resolve Channel RESOLVE CHANNEL -
Start Channel START CHANNEL runmgqchl
Start Channel Initiator START CHINIT runmgqchi

Start Channel Listener - rumqmlsr.

Stop Channel STOP CHANNEL -

Figure 9. Other control commands

Description Control
Create MQSeries conversion exit crtmqevx
Display authority dspmgqaut
Display files used by objects dspmqfls
Display MQSeries transactions dspmqtrn
Record media image rcdmgimg
Recreate media object rcrmqobyj
Resolve MQQSeries transactions rsvmqtrn
Run MQSC commands runmqsc
Run trigger monitor runmqtrm
Run client trigger monitor runmqtmc
Set or reset authority setmqaut

Note: Functions in this group ate available only as control commands. There are no direct PCF or
MQSC equivalents.

Chapter 5. Managing queue managers

This chapter describes how you can perform operations on queue managers and command servers.
It contains these sections:

"Guidelines for creating queue managers"

"Stopping a queue manager"

"Deleting a queue manager"

"Managing the command server for remote administration"

Getting started

Before you can do anything with messages and queues, you must create at least one queue manager.
Once the installation process is complete, you can use the MQSeries control commands to create a
queue manager and start it. Then you can use MQSC commands to create the required default
objects and system objects. Default objects form the basis of any object definitions that you make;
system objects are required for queue manager operation. You must create these objects for each
queue manager you create. The supplied command file amqgscoma.tst, when used with the runmagsc

command, creates a set of default and system objects. See "Running the supplied MQSC command

files" for information about running this sample.

See Chapter 4. "Understanding administration command sets" for more information about
commands that can be used with MQSeries for IRIX, and the different methods of invoking them.

Guidelines for creating queue managers

A queue manager manages the resources associated with it, in particular the queues that it owns. It
provides queueing services to applications for Message Queuing Interface (MQI) calls and
commands to create, modify, display, and delete MQSeries objects. You create a queue manager
using the Crtmgm command. However, before you try this, especially in a production environment,
work through this checklist:

Specify a unique queue manager name.
Limit the number of queue managers.
Specify a default queue manager.
Specify a dead-letter queue.

Specify a default transmission queue.

Specify the required logging parameters.
Back up configuration files after creating a queue manager.

The terms in this list are explained in the sections that follow.

Specify a unique queue manager name

When you create a queue manager, you must ensure that no other queue manager has the same
name, anywhere in your network. Queue manager names are not checked at create time, and non-
unique names will prevent you from creating channels for distributed queuing.

One method of ensuring uniqueness is to prefix each queue manager name with its own (unique)
node name. For example, if a node is called accounts, you could name your queue manager
accounts.saturn.queue.manager, where saturn identifies a particular queue manager and
queue.manager is an extension you can give to all queue managers. Alternatively, you can omit this,
but note that accounts.saturn and accounts.saturn.queue.manager ate different queue
manager names.

If you are using MQSeries for communicating with other enterprises, you can also include your own
enterprise as a prefix. We do not actually do this in the examples, because it makes them more
difficult to follow.

Note: Queue manager names in control commands are case-sensitive. This means that you could
create two queue managers with the names jupiter.queue.manager and
JUPITER.queue.manager. Such complications are best avoided.

Limit the number of queue managers

In MQSeries for IRIX, you can create as many queue managers as resources allow. However,
because each queue manager requires its own resources, it is generally better to have one queue
manager with 100 queues than ten queue managers with ten queues each. In production systems,
many nodes will be run with a single queue manager, but larger server machines may run with
multiple queue managers.

Specify the default queue manager

Each node should have a default queue manager, though it is possible to configure MQSeries on a
node without one.

To create a default queue manager, specify the -q flag on the Crtmgm command. For a detailed
description of this command and its parameters, see crtmgm (Create queue manager).

What is a default queue manager?

The default queue manager is the queue manager that applications connect to if they do not
specify a queue manager name in an MQcoNn call. It is also the queue manager that processes
MQSC commands when you invoke the runmQsc command without specifying a queue
manager name.

How do you specify a default queue manager?

You include the -q flag. on the Crtmgm command to specify that the queue manager you are
creating is the default queue manager. Omit this flag if you do not want to create a default queue
manager.

Specifying a queue manager as the default replaces any existing default queue manager
specification for the node.

What happens if I make another queue manager the default?

If you change the default queue manager, this can affect other users or applications. The change
has no effect on currently-connected applications, because they can use the handle from their
original connect call in any further MQI calls. This handle ensures that the calls are directed to
the same queue manager. Any applications connecting after the change connect to the new
default queue manager.

This may be what you intend, but you should take this into account before you change the
default.

Specify a dead-letter queue

The dead-letter queue is a local queue where messages are put if they cannot be routed to their
correct destination.

Warning!

It is vitally important to have a dead-letter queue on each queue manager in your network.
Failure to do so may mean that errors in application programs cause channels to be closed or
that replies to administration commands are not received.

For example, if an application attempts to put a message on a queue on another queue manager, but
the wrong queue name is given, the channel is stopped, and the message remains on the
transmission queue. Other applications cannot then use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues. The undelivered
message is simply put on the dead-letter queue at the receiving end, leaving the channel and its
transmission queue available.

Therefore, when you create a queue manager you should use the -u flag to specify the name of the
dead-letter queue. You can also use an MQSC command to alter the attributes of a queue manager
and specify the dead-letter queue to be used. See "Altering queue manager attributes" for an example
of an MQSC ALTER command.

A sample dead-letter queue definition is provided with the supplied sample amgscoma. tst. The
queue is called SYSTEM.DEAD.LETTER.QUEUE. See "Creating the default and system objects"
for information about running this sample. When you find messages on a dead-letter queue, you can
use the dead-letter queue handler, supplied with MQSeries, to process these messages. See Chapter
11. "The MQSeries dead-letter queue handlet" for further information about the dead-letter queue
handler itself, and how to reduce the number of messages that might otherwise be placed on the
dead-letter queue.

Specify a default transmission queue

A transmission queue is a local queue on which messages in transit to a remote queue manager are
queued pending transmission. The default transmission queue is the queue that is used when no
transmission queue is explicitly defined. Each queue manager can be assigned a default transmission
queue.

When you create a queue manager you should use the -d flag. to specify the name of the default

transmission queue. This does not actually create the queue; you have to do this explicitly later on.
"

See "Working with local queues" for more information.
Specify the required logging parameters

You can specify logging parameters on the Crtmgm command, including the type of logging, and
the path and size of the log files. In a development environment, the default logging parameters
should be adequate. However, you can change the defaults if, for example:

You have a low-end system configuration that cannot support large logs.
You anticipate a large number of long messages being on your queues at the same time.
For more information about specifying logging parameters:

On the crtmgm command, see crtmgm (Create queue manager).

Using configuration files, see "Log configuration stanzas".

Back up configuration files after creating a queue manager

There are two configuration files to consider:

1. When you install the product, the MQSeries configuration file (ngs. ini) is created. It
contains a list of queue managers, which is updated each time you create or delete a queue
manager. There is one mgs. ini file per node.

2. When you create a new queue manager, a new queue manager configuration file (gm. ini) is
automatically created. This contains configuration parameters for the queue manager.

You should make a backup of these files. If, later on, you create another queue manager that causes
you problems, you can reinstate the backups when you have removed the source of the problem. As
a general rule, you should back up your configuration files each time you create a new queue
manager.

For more information about configuration files, see Chapter 13. "Understanding configuration files".

Working with queue managers

MQSeries provides control commands for creating, starting, ending, and deleting queue managers.
You can also display a queue manager's attributes using the MQSC command DISPLAY QMGR

and change them using ALTER QMGR. See "Displaving queue manager attributes" and "Altering
queue manager attributes".

Creating a default queue manager

The following command creates a default queue manager called saturn.queue.manager and
specifies the names of both its default transmission queue and its dead-letter queue:

crtmgm -g -d MY._DEFAULT.XMIT.QUEUE -u SYSTEM.DEAD.LETTER.QUEUE saturn.queue.manager

where:
-q

This queue manager is the default queue manager.
-d MY.DEFAULT.XMIT.QUEUE

Name of the default transmission queue.
-u SYSTEM.DEAD.LETTER.QUEUE

Name of the dead-letter queue.
saturn.queue.manager

Name of this queue manager. For crtmgm, this must be the last parameter in the
command.

Starting a queue manager

Although you have created a queue manager, it cannot process commands or MQI calls until it has
been started. Start the queue manager by typing in this command:

strmgm saturn.queue.manager

The strmgm command does not return control until the queue manager has started and is ready to
accept connect requests.

Creating the default and system objects

You must create a set of default and system objects for each queue manager you create. To do this,
use the ruNMQSsCc command specifying both the name of the queue manager and the name of the
command file containing the commands. (You can specify amgscoma. tst, which is supplied as part
of the product.) The following command creates the default and system objects:

runmgsc saturn.queue.manager < mgmtop/samp/amgscoma.tst > defobj.out

You can run this command immediately after the Strmgm command has completed.

The file defobj .out is created, if it does not already exist. When the command has completed,
defobj .out contains the output from the MQSC file. You should check that all the commands ran
successfully before continuing.

For more information about running the MQSC facility (runmgsc), see "Running MQSC

commands from text files".

Looking at object files

Each MQSeries queue, queue manager, or process object is represented by a file. Because these
object names are not necessarily valid file names, the queue manager converts the object name into a

valid file name, where necessary. This is described in "Understanding MQSeries file names".

To find out how to display the real file name of an object, see dspmqfls (Display MQSeries files).

Stopping a queue manager

To stop a queue managet, use the endmgm command. For example, to stop a queue manager called
saturn.queue.manager use this command:

endmgm saturn.queue.manager

By default, this command performs a controlled or quiested shutdown of the specified queue manager.
This may take a while to complete--a controlled shutdown waits until all connected applications have
disconnected.

Optionally, this endmgm command can have a flag that specifies how the shutdown is to be carried
out.

If you have problems

Problems in shutting down a queue manager are often caused by applications. For example, when
applications:

Do not check MQI return codes propetly.
Do not request a notification of a quiesce.

Terminate without disconnecting from the queue manager (by issuing an MQDISC call).

Immediate and preemptive queue manager shutdowns

If a shutdown of a queue manager is very slow, or you believe that the queue manager is not going
to stop, you can break out of the endmgm command using Ctrl-C. You can then issue another
endmgm command, but this time with a flag specifying either an immediate or a preemptive
shutdown.

For an immediate shutdown any current MQI calls are allowed to complete, but any new calls fail. This
type of shutdown does not wait for applications to disconnect from the queue manager. For an
immediate shutdown, the command is:

endmgm -1 saturn.queue.manager

If an immediate shutdown does not work, you must resort to a pre-emptive shutdown, specifying the -
p flag. For example:

endmgm -p saturn.queue.manager

Do not use this method unless all other attempts to stop the queue manager using the endmgm
command have failed. This method can have unpredictable consequences for connected
applications. If this method still does not work, see "Stopping a queue manager manually" for an
alternative.

For a detailed description of the endmgm command and its options, see endmgm (End queue

manager}.
Restarting a queue manager

To restart a queue manager, use the command:

strmgm saturn.queue.manager

Making an existing queue manager the default

When you create a default queue manager, the name of the default queue manager is inserted in the
DefaultQueueManager stanza in the MQSeries configuration file (mgs. ini). The stanza and its
contents are automatically created if they do not exist.

You may need to edit this stanza:

To make an existing queue manager the default. To do this you have to change the queue
manager name in this stanza to the name of the new default queue manager. You must do
this manually, using a text editor.

If you do not have a default queue manager on the node, and you want to make an existing
queue manager the default. To do this you must create the DefaultQueueManager stanza--
with the required name--yourself.

If you accidentally make another queue manager the default and wish to revert to the original
default queue manager. To do this, edit the DefaultQueueManager stanza in the MQSeries
configuration file, replacing the name of unwanted default queue manager with that of the
one you do want.

See Chapter 13. "Understanding configuration files" for information about configuration files.

When the stanza contains the required information, stop the queue manager and restart it.

Deleting a queue manager

To delete a queue manager, first stop it, then use the following command:

dltmgm saturn.queue.manager

Deleting a queue manager is a drastic step, because you also delete all the resources associated with
it. This includes not only all queues and their messages, but also all object definitions.

For a description of the dItmgm command and its options, see dltmgm (Delete queue manager).
You should ensure that only trusted administrators have the authority to use this command.

If the usual methods for deleting a queue manager do not work, see "Removing queue managers
manually" for an alternative.

Managing the command server for remote administration

Each queue manager has a command server associated with it. A command server processes any
incoming commands from remote queue managers, or PCF commands from applications. It
presents the commands to the queue manager for processing and returns a completion code or
operator message depending on the origin of the command. There are separate control commands
for starting and stopping the command server.

Note: For remote administration, you must ensure that the target queue manager is running.
Otherwise, the messages containing commands cannot leave the queue manager from
which they are issued. In fact, these messages are queued in the local transmission queue
that serves the remote queue manager. This situation should be avoided, if at all possible.

Starting the command server

To start the command server use this command:

strmgcsv saturn.queue.manager

where saturn.queue.manager is the queue manager for which the command server is being
started.

Displaying the status of the command server

For remote administration, you must ensure that the command server on the target queue manager
is running. If it is not running, no remote commands can be processed. Any messages containing
commands are queued in the target queue manager's command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the command is:

dspmgcsv saturn.queue.manager

You must issue this command on the target machine. If the command server is running, the
following message is returned:

AMQ8027 MQSeries Command Server Status ..: Running
Stopping a command server

To end a command server, the command, using the previous example is:

endmgcsv saturn.queue.manager

You can stop the command server in two different ways:
For a controlled stop, use the endmQcsv command with the -c flag.. This is the default.

For an immediate stop, use the endmMQcsv command with the -i flag.

Chapter 6. Administering local MQSeries
objects

This chapter describes how to administer local MQSeries objects to support applications programs
that use the Message Queuing Interface (MQI). In this context, local administration means creating,
displaying, changing, copying, and deleting MQSeries objects.

This chapter contains these sections:

"Supporting application programs that use the MQI"

"Issuing MQSC commands for administration"

"Running MQSC commands from text files"
"If you have problems with MQSC"

'

"Working with local queues"

'

"Working with alias queues"”

'

"Working with model queues"

'

'Managing objects for triggering”

Supporting application programs that use the MQI

MQI application programs need certain objects before they can run successfully. For example,
Figure 10 shows an application that removes messages from a queue, processes them, and then
sends some results to another queue on the same queue manager.

Figure 10. Queues, messages, and applications

Application

get

Queue Manager

put Fromother

put

] . -
applications

get Toather

> applications

Wheteas applications can put (using MQPUT) messages on local or remote queues, they can only
get (using MQGET) messages directly from local queues.

Before this application can be run, these conditions must be satisfied:

The queue manager must exist and be running.

The first application queue, from which the messages are to be removed, must be defined.

The second queue, on which the application puts the messages, must also be defined.

The application must be able to connect to the queue manager. To do this it must be linked
to the product code. See the MQSeries Application Programming Guide for more information.

The applications that put the messages on the first queue must also connect to a queue
manager. If they are remote, they must also be set up with transmission queues and channels.
This part of the system is not shown in Figure 10.

Issuing MQSC commands for administration

In this section, we assume that you will be issuing commands using the runmMQsc command. You
can do this interactively--entering the commands at the keyboard--or you can redirect the standard
input device (stdin) to run a sequence of commands from an ASCII text file. In both cases, the

format of the commands is the same.

The MQSeries Command Reference manual contains a description of each MQSC command and its

syntax.

Before you start

Before you can run MQSC commands, you must have created and started the queue manager that is
going to run the commands, see "Creating a default queue manager".

MQSeries object names

In examples, we use some long names for objects. This is to help you identify what type of object it
is you are dealing with.

When you are issuing MQSC commands, you need only specify the local name of the queue. In our
examples, we use queue names such as: ORANGE.LOCAL.QUEUE

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a local queue. It is not
required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name.

The queue._manager part of the name is simply to illustrate that this object is a queue manager. It is
not required for the names of queue managers in general.

You do not have to use these names, but if you do not, you must modify any commands in
examples that specify them.

Case-sensitivity in MQSC commands

MQSC commands, including their attributes, can be written in upper or lower case. Object names in
MQSC commands are folded (that is, QUEUE and queue are not differentiated), unless the names
are put in single quotes. If quotes are not used, the object is processed with a name in upper-case.
See the MQSeries Command Reference manual for more information. However, the runmqgsc command
that invoke the MQSC facility is case-sensitive, see "Using control commands".

Standard input and output

The standard input device, also referred to as stdin, is the device from which input to the system is
taken. Typically, this is the keyboard, but you can redirect it to come from a serial port, a (disk) file,
and so on. The standard output device, also referred to as stdout, is the device to which output from
the system is sent. Typically, this is a display, but it can be redirected to a serial port, a file, and so
on.

On a shell command the '<' operator redirects input. If this operator is followed by a file name,
input is taken from the file. Similarly, the '>' operator redirects output; if this operator is followed by
a file name, the output is sent to the file.

Using the MQSC facility interactively

To enter commands interactively, open a shell and type:

runmgsc

and then press Enter.

In this command, a queue manager name has not been specified, therefore, the MQSC commands
will be processed by the default queue manager. Now you can type in any MQSC commands, as
required. For example, try this one:

DEFINE QLOCAL (ORANGE.LOCAL .QUEUE)

Feedback from MQSC commands

When you issue commands from the MQSC facility, the queue manager returns operator messages
that confirm your actions or tell you about the errors you have made. For example:

AMQ8006: MQSeries queue created

AMQ8405: Syntax error detected at or near end of command segment below:-
VA

The first message confirms that a queue has been created; the second indicates that you have made a
syntax error. These messages are sent to the standard output device. If you have not entered the
command correctly, refer to the MQSeries Command Reference manual for the correct syntax.

Ending interactive input to MQSC

If you are using MQSC interactively, you can exit by typing the EOF character CTRL+D.

If you are redirecting input from other sources, such as a text file, you do not have to do this.
Displaying queue manager attributes

To display the attributes of the queue manager specified on the ruNMQSC command, use the
following MQSC command:

DISPLAY QMGR ALL

A typical output is:

1 : display gmgr all

AMQ8408: Display Queue Manager details.
DESCR()
DEADQ(SYSTEM.DEAD.LETTER.QUEUE)
DEFXMITQ(MY .DEFAULT . XMIT .QUEUE)
COMMANDQ(SYSTEM.ADMIN . COMMAND . QUEUE)
QVMNAME(saturn.queue .manager)
TRIGINT(999999999)

MAXHANDS (256)
MAXUMSGS (10000)
AUTHOREV (D 1 SABLED)
INHIBTEV(DISABLED)
LOCALEV(DISABLED)
REMOTEEV(DISABLED)
PERFMEV (D 1SABLED)
STRSTPEV(ENABLED)
MAXPRTY (9)
CCSID(850)

MAXMSGL (4194304)
CMDLEVEL (100)
PLATFORM(UNIX)
SYNCPT

The ALL parameter on the DISPLAY QMGR command causes all the queue manager attributes to
be displayed. In particular, the output tells us the default queue manager name
(saturn.queue.manager), and the names of the dead-letter queue
(SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE). Both these queues should have been created when you
ran the sample amgscoma. tst; see "Creating the default and system objects".

Before you go further, confirm that these queues have been created by typing the command:

DISPLAY QUEUE (SYSTEM.*)
or
DIS Q (SYSTEM.*)

This displays a list of queues that match the stem 'SYSTEM.*'. The parentheses are required.
Using a queue manager that is not the default

You can specify the queue manager name on the runMQsc command to run MQSC commands on a
local queue manager other than the default. For example, to run MQSC commands on queue
manager jupiter.queue.manager type:

runmgsc jupiter.queue.manager

and then press Enter.

After this, all the MQSC commands you type in are processed by this queue manager--assuming that
it is on the same node and is already running.

You can also run MQSC commands on a remote queue manager, see "Issuing MQSC commands
remotely".

Altering queue manager attributes

To alter the attributes of the queue manager specified on the runNMQSC command, use the MQSC
command ALTER QMGR, specifying the attributes and values that you want to change. For

example, use the following commands to alter the attributes of jupiter.queue.manager:

runmgsc jupiter.queue.manager

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

Press Enter after typing the first line.

The ALTER QMGR command changes the dead-letter queue used, and enables inhibit events.

Running MQSC commands from text files

Running MQSC commands interactively is suitable for quick tests, but if you have very long
commands, or commands that you want to repeat, over again, you should redirect stdin from a text
file. (See "Standard input and output” for information about stdin and stdout.) To do this, first
create a text file containing the MQSC commands using your familiar text editor. When you use the
runmasc command, use the shell redirection operators. For example, the following command runs
a sequence of commands contained in the text file myprog. in:

runmgsc < myprog-.in

Similarly, you can also redirect the output to a file. A file containing the MQSC commands for input
is called an MQSC command file, the output file containing replies from the queue manager is called
the report file.

To redirect both stdin and stdout on the runMQsc command, use this form of the command:

runmgsc < myprog.in > myprog.out

This command invokes the MQSC commands contained in the MQSC command file myprog.in.
Because we have not specified a queue manager name, the MQSC commands are run against the
default queue manager. The output is sent to the report file myprog.out. Figure 11 shows an extract
from the MQSC command file myprog. in and Figure 12 shows the corresponding extract of the
output in myprog.out.

To redirect stdin and stdout on the ruUNMQSC command, for a queue manager
(saturn.queue.manager) that is not the default, use this form of the command:

runmgsc saturn.queue.manager < myprog.in > myprog.out

and then press Enter.

MQSC command files

MQSC commands are written in human-readable form, that is, in ASCII text. Figure 11 is an extract

from an MQSC command file showing an MQSC command (DEFINE QLOCAL) with its
attributes. The MQSeries Command Reference manual contains a description of each MQSC command
and its syntax.

Figure 11. Extract from the MQSC command file, myprog.in

DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +
DESCR(" ") +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER

You must limit lines to maximum of 80 characters. The plus sign indicates that the command is
continued on the next line.

MQSC reports

The runmgsc command returns a report, which is sent to stdout. The report contains:

A header identifying MQSC as the source of the report:

Starting MQSeries Commands.

An optional numbered listing of the MQSC commands issued. By default, the text of the
input is echoed to the output. Within this output, each command is prefixed by a sequence
number, as shown in Figure 12. However, you can use the -e flag. on the runmgsc
command to suppress the output.

A syntax error message for any commands found to be in error.

An operator message indicating the outcome of running each command. For example, the
operator message for the successful completion of a DEFINE QLOCAL command is:

AMQ8006: MQSeries queue created.
Other messages resulting from general errors when running the script file.
A brief statistical summary of the report indicating the number of commands read, the

number of commands with syntax errors, and the number of commands that could not be
processed.

Note: The queue manager will only attempt to process those commends that have no syntax
errofs.

Figure 12. Extract from the MQSC report file, myprog.out.

Starting MQSeries Commands.

12: DEFINE QLOCAL("RED.LOCAL.QUEUE") REPLACE +
: DESCR(" ") +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL (1024) +
DEFSOPT(SHARED) +
USAGE(NORMAL) +
: NOTRIGGER
AMQB8006: MQSeries queue created.

15 MQSC commands read.
0 commands have a syntax error.
0 commands cannot be processed.

Running the supplied MQSC command files
When you install MQSeries for IRIX, these MQSC command files are supplied:
amgscoma.tst
Default and system objects.
amqscos0.tst
Definitions of objects used by sample programs.
The files are located in the directory /mgmtop/samp.

You should already have run runma@sc against the command file amgscoma. tst. If you have not
done this, or if you have deleted any of the objects created from it, run it again by typing:

runmgsc < /mgmtop/samp/amgscoma.tst

The DEFINE commands in amgscoma. tst specify the REPLACE option, which overwrites the
existing definitions, if possible. See the MQSeries Command Reference manual for more information
about REPLACE.

Using runmgsc to verify commands

You can use the ruNMQSCc command to verify MQSC commands on a local queue manager without
actually running them. To do this, set the -v flag in the ruUNMQSC command, for example:

runmgsc -v < myprog.in > myprog.out

When you invoke runmqgsc against an MQSC command file, the queue manager verifies each
command and returns a report without actually running the MQSC commands. This allows you to
check the syntax of all the commands in your command file. This is particularly important if you are:

Running a large number of commands from a command file.
Using an MQSC command file many times over.
This report is similar to that shown in Figure 12.

You cannot use this method to verify MQSC commands remotely. For example, if you attempt this
command:

runmgsc -w 30 -v jupiter.queue.manager < myprog.in > myprog.out

the -w flag is ignored, and the command is run locally.

If you have problems with MQSC

If you cannot get your MQSC commands to run, check the following list to see if any of these
common problems apply to you. It is not always obvious what the problem is when you read the
error generated.

When you use the runmMQsc command, remember:

Check your file paths. By default, the runmqsc executable is located in directory Zusr/bin,
and this is linked to the product libraries using symlink.

Use the indirection operator < when redirecting input from a file. Otherwise, the queue
manager interprets the file name as a queue manager name. For example:

runmgsc amgscoma.tst

(C) Copyright Willow Technology, Inc. 1998. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

AMQ8118: MQSeries queue manager does not exist.
0 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

If you redirect output to a file, use the > indirection operator. By default, the output goes to
the directory from which you ran the runmQsc command. Specify a fully-qualified file name
to send your output to a specific file and directory. For example:

runmgsc < /mgmtop/samp/amgscoma.tst > /u/zorg/myfile._output

Check that you really have created the queue manager that is going to run the commands.

To do this, look in the configuration file mgs. ini, which by default is located in the
/var/mgm directory. This file contains the names of the queue managers and the name of
the default queue manager, if you have one.

The queue manager should already be started, if it is not, start it; see "Starting a queue
manager". You get an error message if it is already started.

Specify a queue manager name on the runMQSC command if you have not defined a default
queue manager, otherwise you get this error:

runmgsc <amgscoma.tst

(C) Copyright Willow Technology, Inc. 1998. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

AMQ8146: MQSeries queue manager not available.
0 MQSC commands read.

0 commands have a syntax error.

0 commands cannot be processed.

To correct this type of problem, see "Making an existing queue manager the default”.

You cannot specify an MQSC command as a FUNMQSC parameter:

runmgsc DEFINE QLOCAL(FRED)

You cannot enter MQSC commands from the shell before you issue the runmaqsc
command. For example:

DEFINE QLOCAL(QUEUEL)

ksh: DEFINE: not found.

You cannot run control commands from runM@sc. For example, you cannot start a queue
manager once you are running MQSC interactively:

runmgsc

5697-176 (C) Copyright Willow Technology, Inc. 1998. ALL RIGHTS
RESERVED.

Starting MQSeries Commands.

strmgm saturn.queue.manager
1 - &vstrgm. saturn.queue.manager
AMQ8405: Syntax error detected at or near end of command segment below:

S

See also "If you have problems using MQSC remotely”.

Browsing queues

If you need to look at the contents of the messages on a queue, MQSeries for IRIX provides a
sample queue browser for this purpose. The browser is supplied both as source and as a module that
can be run. By default, the file names and paths are:

Source
mgmtop/samp/amgsbcg0.c

Executable
mgmtop/samp/bin/amgsbcg

The sample takes two parameters, the queue manager name (snooker) and the queue name
(SYSTEM.ADMIN.RESPQ. tpp01). For example:

amgsbcg snooker SYSTEM._ADMIN.RESPQ.tpp0O1

There are no defaults, both parameters are required. Typical results from this commands are:

AMQSBCGO - starts here

FAxAAXAAAXAAAAAAAXAAAAAXX

MQCONN to snooker
MQOPEN - "SYSTEM.ADMIN.RESPQ.tppO1*-

MQGET of message number 1
****\Message descriptor****

Strucld : *"MD * Version : 1
Report : 0 MsgType : 8
Expiry : -1 Feedback : O

Encoding : 273 CodedCharSetld : 850

Format : "AMQMRESP*

Priority : 5 Persistence : 1

Msgld : X"414D5120736E6F6F6B657220202020202ED47690071A6D00"
Correlld : X"00*
BackoutCount : O

ReplyToQ . "

ReplyToQMgr : "snooker
** Jdentity Context
Userldentifier : "tpp0l
AccountingToken :

X" 043730373000OO'
ApplldentityData : *

** Origin Context

PutApplType D "6"

PutAppIName . "
PutDate : "19941124* PutTime : "11184015*
ApplOriginData : " "

length - 268 bytes

00000000: 736E 6F6F 6B65 7220 2020 2020 2020 2020 "snooker "
00000010: 2020 2020 2020 2020 2020 2020 2020 2020 * "
00000020: 2020 2020 2020 2020 2020 2020 2020 2020 * "

00000030: 534E 4FAF 4B45 522E 5749 4748 542E 5443 "SNOOKER.WIGHT. TC'
00000040: 5020 2020 2020 2020 2020 2020 2020 2020 "P

00000050: 2020 2020 2020 2020 2020 2020 2020 2020 * "
00000060: 0000 0001 0000 0024 0000 0001 0000 0015 *....... > i "
00000070: 0000 0001 0000 0001 OOOO OOOO 0000 0000 ™.o ..--... "
00000080: 0000 0003 0000 0004 0000 0028 0000 ODAD "........... C-...°
00000090: 0000 0000 0000 0014 534E 4F4F 4B45 522E "........ SNOOKER. *
000000AQ: 5749 4748 542E 5443 5020 2020 0000 0003 *"WIGHT.TCP e
000000BO: 0000 0010 OOOO O5E7 0000 0001 0000 0004 ™. .. .o iicoonao-.- "
000000CO: 0000 0050 0000 ODAE 0000 0000 0000 0039 "...P......--..- 9-

000000D0: 2066 726F 6D20 736E 6F6F 6B65 7220 746F * from snooker to”
O00O000EO: 2077 6967 6874 2076 6961 2074 6370 2F69 " wight via tcp/i”
000000F0: 7020 2020 2020 2020 2020 2020 2020 2020 "p -
00000100: 2020 2020 2020 2020 2000 0000 - - -

MQGET of message number 2

Message descriptor****

Strucld : *"MD * \Version : 1
Report : 0 MsgType : 2

Expiry : -1 Feedback : O

Encoding : 273 CodedCharSetld : 850
Format : "MQADMIN *

Priority - 8 Persistence : 1

Msgld : X"414D5120736E6F6F6B657220202020202ED476901524D200"
Correlld : X"414D5120736E6F6F6B657220202020202ED47690071A6D00*
BackoutCount : O

ReplyToQ . "
ReplyToQMgr I "snhooker
** Jdentity Context
Userldentifier : "tppOl
AccountingToken :

X" 043730373000'
ApplldentityData :© *

** Origin Context

PutApplType I "6"

PutAppIName :
PutDate : "19941124* PutTime : "11184035"
ApplOriginData : * "

length - 36 bytes

00000000: 0000 0002 0000 0024 0000 0001 0000 0015 ~"....... > iiaaa- "
00000010: 0000 0001 OOOO 0001 OOOO 0000 0000 0000 ™. .oceecwwconannn "
00000020: 0000 0000 .. "

MQGET of message number 3
****\lessage descriptor****

Strucld : "MD * Version : 1
Report : 0O MsgType : 8

Expiry : -1 Feedback : O

Encoding : 273 CodedCharSetld : 850
Format : “AMQMRESP*

Priority : 5 Persistence :© 1
Msgld : X"414D5120736E6F6F6B657220202020202ED477D62A9EA100*"
Correlld : X*00*
BackoutCount : O
ReplyToQ :
ReplyToQMgr : "snooker
** Jdentity Context
Userldentifier : "trevor

AccountingToken :
X"043730373000*
ApplldentityData : * "
** Origin Context
PutApplType I 6"
PutAppIName . "
PutDate : "19941124* PutTime : "11240678"
ApplOriginData : " "
EaEe ok Message E = =

length - 188 bytes

00000000: 736E 6F6F 6B65 7220 2020 2020 2020 2020 "snooker "
00000010: 2020 2020 2020 2020 2020 2020 2020 2020 - "
00000020: 2020 2020 2020 2020 2020 2020 2020 2020 - "

00000030: 534E 4F4F 4B45 522E 5749 4748 542E 5443 "SNOOKER.WIGHT.TC*
00000040: 5020 2020 2020 2020 2020 2020 2020 2020 "P "

00000050: 2020 2020 2020 2020 2020 2020 2020 2020 * "
00000060: 0000 0001 0000 0024 0000 0001 0000 0015 *....... > .. "
00000070: 0000 0001 OOOO 0001 OOOO OOOO 0000 0000 ™. cecciiceaann- "
00000080: 0000 0002 0000 0004 0000 0028 0000 ODAD ™.-r
00000090: 0000 0000 0000 0014 534E 4F4F 4B45 522E "........ SNOOKER. *

O000000AO: 5749 4748 542E 5443 5020 2020 0000 0003 “WIGHT.TCP et

000000BO: 0000 0010 0000 O5E7 0000 0001 e a "

MQGET of message number 4
****\essage descriptor****

Strucld : "MD * Version : 1
Report : 0 MsgType : 2

Expiry : -1 Feedback : O

Encoding : 273 CodedCharSetld : 850
Format : "MQADMIN *

Priority : 8 Persistence : 1
Msgld : X"414D5120736E6F6F6B657220202020202ED477D63826C000*
Correlld : X"414D5120736E6F6F6B657220202020202ED477D62A9EA100*
BackoutCount : O

ReplyToQ . "
ReplyToQMgr > "snooker
** ldentity Context
Userldentifier : "tiger

AccountingToken :
X"043730373000*

ApplldentityData : * "

** Origin Context

PutApplType I "6"

PutAppIName . "

PutDate : "19941124*° PutTime : "11240694°

ApplOriginData : * "

length - 36 bytes

00000000: 0000 0002 0000 0024 0000 0001 0000 0015 *....... > e "
00000010: 0000 0001 O0OOO 0001 OOOO OOOO 0000 0000 ™. ceecwiceeaann- "
00000020: 0000 0000 . "

No more messages
MQCLOSE
MQDISC

Working with local queues

This section contains examples of some of the MQSC commands that you can use. Refer to the
MQSeries Command Reference for a complete description of these commands.

This section describes how you use some of these MQSC commands to manage:

Local queues.

Queue aliases (also referred to as alias queues).
Model queues.

Remote queues (also referred to as a local definition of a remote queue).

Defining a local queue

For an application, the local queue manager is the queue manager to which the application is
connected. Queues that are managed by the local queue manager are said to be local to that queue
managet.

Use the MQSC command DEFINE QLOCAL to create a definition of a local queue and also to
create the data structure that is called a queue. You can also modify the queue characteristics from
those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to have these
characteristics:

It is enabled for gets, disabled for puts, and operates on a first-in-first-out (FIFO) basis.

It is an 'ordinary' queue, that is, it is not an initiation queue or a transmission queue, and it
does not generate trigger messages.

The maximum queue depth is 1000 messages; the maximum message length is 2000 bytes.

The following MQSC command does this:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +

DESCR("Queue for messages from other systems®) +
PUT (DISABLED) +

GET (ENABLED) +

NOTRIGGER +

MSGDLVSQ (FIFO) +

MAXDEPTH (1000) +

MAXMSGL (2000) +

USAGE (NORMAL)

Notes:

Most of these attributes are the defaults as supplied with the product. However, they are
shown here for purposes of illustration. You can omit them if you are sure that the defaults

are what you want or have not been changed. See also "Displaving default object attributes".
USAGE (NORMAL) indicates that this queue is not a transmission queue.

If you already have a local queue on the same queue manager with the name
ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if you want

to overwrite the existing definition of a queue, but see also "Changing local queue
attributes".

Defining a dead-letter queue

Each queue manager should have a local queue to be used as a dead-letter queue so that messages
that cannot be delivered to their correct destination can be stored for later retrieval. You must
explicitly tell the queue manager about the dead-letter queue. You can do this by specifying a dead-
letter queue on the Crtmgm command or you can use the ALTER QMGR command to specify one
later. You must also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied with the product
in the file amgscoma. tst. This queue is automatically created when you run the sample. You can
modify this definition if required. There is no need to rename it, although you can if you like.

A dead-letter queue has no special requirements except that it must be a local queue and its
MAXMSGL (maximum message length) attribute must enable the queue to accommodate the
largest messages that the queue manager has to handle.

MQSeries provides a dead-letter queue handler that allows you to specify how messages found on a
dead-letter queue are to be processed or removed. For further information, see Chapter 11. "The
MQSeries dead-letter queue handler".

Displaying default object attributes

When you define an MQSeries object, it takes any attributes that you do not specify from the default
object. For example, when you define a local queue, the queue inherits any attributes that you omit
in the definition from the default local queue, which is called
SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what these attributes are, use the following

command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE) ALL

Note: The syntax of this command is different from that of the corresponding DEFINE command.

You can selectively display attributes by specifying them individually. For example:

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
MAXDEPTH +
MAXMSGL +
CURDEPTH

This command displays the three specified attributes as follows:

AMQ8409: Display Queue details.
QUEUE(ORANGE . LOCAL .QUEUE)
MAXDEPTH(1000)

MAXMSGL (2000)
CURDEPTH(0)

CURDEPTH is the current queue depth, that is, the number of messages on the queue. This is a

useful attribute to display, because you can use it to monitor the queue depth to ensure that the
queue does not become full.

Copying a local queue definition

You can copy a queue definition using the LIKE attribute on the DEFINE command. For
example:

DEFINE QLOCAL (MAGENTA.QUEUE) +
LIKE (ORANGE.LOCAL .QUEUE)

This command creates a queue with the same attributes as our original queue

ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition, but substituting
one or more changes to the attributes of the original. For example:

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL (1024)

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the queue
THIRD.QUEUE, but specifies that the maximum message length on the new queue is to be 1024
bytes, rather than 2000.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the queue
attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as DEFINE
LIKESYSTEM.DEFAULT.LOCAL.QUEUE).

Changing local queue attributes

You can change queue attributes in two ways, using either the ALTER QLOCAL command or the
DEFINE QLOCAL command with the REPLACE attribute. In "Defining a local queue", we
defined the queue ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the

maximum message length on this queue to 10 000 bytes.

Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

This command changes a single attribute, that of the maximum message length; all the other
attributes remain the same.

Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

This command changes not only the maximum message length, but all the other attributes,
which are given their default values. The queue is now put enabled whereas previously it was
put inhibited. Put enabled is the default, as specified by the queue
SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have changed it.

If you decrease the maximum message length on an existing queue, existing messages are not
affected. Any new messages, however, must meet the new criteria.

Clearing a local queue

To delete all the messages from a local queue, called MAGENTA.QUEUE, use the following

command:

CLEAR QLOCAL (MAGENTA.QUEUE)

You cannot clear a queue if:
There are uncommitted messages that have been put on the queue under syncpoint.

An application currently has the queue open.

Deleting a local queue

Use the MQSC command DELETE QLOCAL to delete a local queue. A queue cannot be deleted if
it has uncommitted messages on it. However, if the queue has one or more committed messages,
and no uncommitted messages, it can only be deleted if you specify the PURGE option. For
example:

DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it contains any
committed messages.

Working with alias queues

An alias queue (also known as a queue alias) provides a method of redirecting MQI calls. An alias
queue is not a real queue but a definition that resolves to a real queue. The alias queue definition
contains a target queue name which is specified by the TARGQ attribute (BaseQName in PCF).
When an application specifies an alias queue in an MQI call, the queue manager resolves the real
queue name at runtime.

For example, an application has been developed to put messages on a queue called
MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an MQOPEN request and,

indirectly, if it puts a message on this queue. The application is not aware that the queue is an alias
queue. For each MQI call using this alias, the queue manager resolves the real queue name, which
could be either a local queue or a remote queue defined at this queue manager.

By changing the value of the TARGAQ attribute, you can redirect MQI calls to another queue,
possibly on another queue manager. This is useful for maintenance, migration, and load-balancing.

Defining an alias queue

The following command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls--that specify MY.ALIAS.QUEUE--to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls fail if the queue
YELLOW.QUEUE does not exist at runtime.

If you change the alias definition, you can redirect the MQI calls to another queue. For example:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE) REPLACE

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear to have different
attributes for different applications. You do this by defining two aliases, one for each application.
Suppose there are two applications:

Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed to get
messages from it.

Application BETA can get messages from YELLOW.QUEUE, but is not allowed to put
messages on it.

You can do this using the following commands:

* This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

* This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses the queue

name BETAS.ALIAS.QUEUE. They both access the same queue, but in different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in the same way
that you use them with local queues.

Using other commands with queue aliases

You can use the appropriate MQSC commands to display or alter queue alias attributes, or delete the
queue alias object. For example:

* Display the queue alias®™ attributes
* ALL = Display all attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE) ALL
* ALTER the base queue name, to which the alias resolves.
* FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

* Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS_ALIAS.QUEUE)

You cannot delete a queue alias if, for example, an application currently has the queue open or has a
queue open that resolves to this queue. See the MQSeries Command Reference manual for more
information about this and other queue alias commands.

Working with model queues

A queue manager creates a dynamic queue if it receives an MQI call from an application specifying a
queue name that has been defined as a model queue. The name of the new dynamic queue is
generated by the queue manager when the queue is created. A model queue is a template that specifies
the attributes of any dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as they are required.
Defining a model queue

You define a model queue with a set of attributes in the same way that you define a local queue.
Model queues and local queues have the same set of attributes except that on model queues you can
specify whether the dynamic queues created are temporary or permanent. (Permanent queues are
maintained across queue manager restarts, temporary ones are not). For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR("Queue for messages from application X*) +
PUT (DISABLED) +

GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERDYN)

This command creates a model queue definition. From the DEFTYPE attribute, the actual queues
created from this template are permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in the same way
that you use them with local queues.

Using other commands with model queues

You can use the appropriate MQSC commands to display or alter a model queue's attributes, or
delete the model queue object. For example:

* Display the model queue®s attributes
* ALL = Display all attributes

DISPLAY QUEUE (GREEN.MODEL.QUEUE) ALL
* ALTER the model to enable puts on any
* dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

* Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Managing objects for triggering

MQSeries provides a facility for starting an application automatically when certain conditions on a
queue are met. One example of the conditions is when the number of messages on a queue reaches
a specified number. This facility is called triggering and is described in detail in the MQSeries Application
Programming Guide. This section describes how to set up the required objects to suppott triggeting on
MQSeries for IRIX.

Defining an application queue for triggering

An application queue is a local queue that is used by applications for messaging, through the MQI.

Triggering requires a number of queue attributes to be defined on the application queue. Triggering
itself is enabled by the Trigger attribute (TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of priority 5 or
greater on the local queue MOTOR.INSURANCE.QUEUE, as follows:

DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +
PROCESS (MOTOR. INSURANCE .QUOTE.PROCESS) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

In this example:
QLOCAL (MOTOR.INSURANCE.QUEUE)

The name of the application queue being defined.
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

The name of the application to be started by a trigger monitor program.
MAXMSGL (2000)

The maximum length of messages on the queue.
DEFPSIST (YES)

The default persistence for messages is that messages are persistent on this queue.
INITQ (MOTOR.INS.INIT.QUEUE)

The name of the initiation queue on which the queue manager is to put the trigger message.
TRIGGER

The trigger attribute value.

TRIGTYPE (DEPTH)

A trigger event is generated when the number of messages of the required priority (TRIMPRI)
reaches the number specified in TRIGDPTH.

TRIGDPTH (100)

The number of messages required to generate a trigger event.

TRIGMPRI (5)

The priority of messages that are to be counted by the queue manager in deciding whether to
generate a trigger event. Only messages with priority 5 or higher are counted.

Defining an initiation queue

When a trigger event occurs, the queue manager puts a trigger message on the initiation queue
specified in the application queue definition. Initiation queues have no special settings, but you can
use the following definition of the local queue MOTOR. INS. INIT.QUEUE for guidance:

DEFINE QLOCAL(MOTOR. INS. INIT.QUEUE) +
GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (10)

Creating a process definition

Use the DEFINE PROCESS command to create a process definition. A process definition
associates an application queue with the application that is to process messages from the queue. This
is done through the PROCESS attribute on the application queue MOTOR. INSURANCE . QUEUE.

The following MQSC command defines the required process, MOTOR. INSURANCE . QUOTE . PROCESS,
identified in this example:

DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
DESCR ("lInsurance request message processing®) +
APPLTYPE (UNIX) +
APPLICID ("/u/admin/test/IRMPO1.0%") +
USERDATA ("open, close, 235%)

MOTOR.INSURANCE.QUOTE.PROCESS
The name of the process definition.
DESCR ('Insurance request message processing')

The text following the keyword is a description of the application program to which the
definition relates. This text is displayed when you use the DISPLAY PROCESS command. This
can help you to identify what the process does. If you use spaces in the string, you must use the
single quotes.

APPLTYPE (UNIX)

The type of the application is one that runs on IRIX
APPLICID (*/u/admin/test/IRMP01.0")

The name of the application executable.

USERDATA (‘open, close, 235")

User-defined data, which can be used by the application.
Displaying your process definition

Use the DISPLAY PROCESS command, with the ALL keyword, to examine the results of your
definition. For example:

DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL
AMQ8407: Display Process details.

DESCR ("Insurance request message processing®) +

APPLICID ("/u/admin/test/IRMP01.0") +

USERDATA (open, close, 235) +

PROCESS (MOTOR. INSURANCE.QUOTE.PROCESS) +

APPLTYPE (UNIX)

You can also use the MQSC command ALTER PROCESS to alter an existing process definition
and DELETE PROCESS to delete a process definition.

Chapter 7. Administering remote MQSeries
objects

This chapter describes how to administer MQSeries objects on another queue manager. It also
describes how you can use remote queue objects to control the destination of messages and reply
messages.

It contains these sections:

"Understanding channels and remote queuing”

"Remote administration"

"Creating a local definition of a remote queue"

"Using remote queue definitions for aliasing”

For more information about channels, their attributes, and how to set them up, refer to the MQSeries

Distributed Queuing Guide.

Understanding channels and remote queuing

Queue managers communicate with each other using channels. For example, if an application is to
put a message on a queue managed by a remote queue manager, a channel must be set up between
the two queue managers. The channel is defined to the queue managers at each end of the
connection. Fach channel is named and has a number of attributes that define, for example, the type
of channel, the protocol to be used for communication.

Channels are used for sending messages between queue managers. These messages may originate
from:

User-written application programs that transfer data from one node to another.
User-written administration applications that use PCFs.
Queue managers sending:

Instrumentation event messages to another queue manager.

MQSC commands issued from a runmMQsc command in indirect mode--where the
commands are run on another queue manager.

Channels are unidirectional, that is, messages can only be sent in one direction. Channel definitions
are made in complementary pairs, one at each end of the connection. For example, if one end is a
sender, the other must be a receiver.

Channels are 'linked' to queue managers (and therefore the applications they serve) by transmission
queues and remote queue definitions. A transmission queue is used to forward messages (through a
channel) to another queue manager. A remote queue definition identifies a queue on another queue
manager. To give you an idea of how these things can fit together:

A remote queue definition specifies a transmission queue.

A channel serves a transmission queue, which is specified when the channel is defined.

"Preparing channels and transmission queues for remote administration" shows how to use these

definitions to set up remote administration.

You define a channel using the DEFINE CHANNEL MQSC command. Channels, their attributes, and
how you use them in distributed queuing, are discussed at length in the MQSeries Distributed Queuing
Guide. In this section, the examples concerned with channels use the default channel attributes
unless otherwise specified.

Creating a local definition of a remote queue

You can use a remote queue definition as a local definition of remote queue. You create a remote
queue object--on your local queue manager--to identify a local queue on another queue manager.

Understanding a local definition of a remote queue

An application connects to a local queue manager and then issues an MQOPEN call. In the open
call, the queue name specified is that of a remote queue definition on the local queue manager. The
remote queue definition supplies the names of the destination queue, the destination queue manager,
and optionally, a transmission queue. To put a message on the remote queue, the application issues
an MQPUT call, specifying the handle returned from the MQOPEN call. The queue manager
appends the remote queue name and the remote queue manager name to a transmission header in
the message. This information is used to route the message to its correct destination in the network.

As administrator, you can control the destination of the message by altering the remote queue
definition.

Example of using a local definition of a remote queue

Purpose:

An application is required to put a message on a queue owned by a remote queue manager.
How it works:

The application connects to a queue manager called saturn.queue.manager. The destination
queue is owned by another queue manager.

On the MQOPEN call, the application specifies these fields:

Field Description
Value

ObjectName Specifies the local name of the remote queue object. This defines the
CYAN.REMOTE.QUEUE |destination queue and the destination queue manager.

ObjectType Identifies this object as queue.
(Queue)
ObjectQmgrName This field is optional:
Blank
or [f blank, the name of the local queue manager is assumed. (This is

saturn.queue.manager [the queue manager on which the remote queue definition was made
and to which the application is connected).

If not blank, the name of local queue manager must be specified.

After this, the application issues an MQPUT call to put a message on to this queue.

On the local queue manager, you can create a local definition of a remote queue using the following
MQSC commands:

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ("Queue for auto insurance requests from the branches®) +
RNAME (AUTOMOBILE. INSURANCE.QUOTE.QUEUE) +
RQMNAME (Jupiter.queue.manager) +
XMITQ (INQUOTE.XMIT.QUEUE)

Where:
QREMOTE (CYAN.REMOTE.QUEUE)

Specifies the local name of the remote queue object. This is the name that applications
connected to this queue manager must specify in the MQOPEN call to open the queue

AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the remote queue manager
Jupiter.queue.manager.

DESCR ("Queue for auto insurance requests from the branches”)
Some descriptive text, that you can put in to remind yourself and others what this queue is for.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)

The name of the destination queue on the remote queue manager. This is the real destination

queue for messages that are sent by applications that specify the queue name
CYAN.REMOTE.QUEUE. The queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE
must be defined as a local queue on the remote queue manager

RQMNAME (jupiter.queue.manager)

The name of the remote queue manager that owns the destination queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)

The name of the transmission queue. This is optional, if not specified, a queue with the same
name as the remote queue manager is used.

In either case, the appropriate transmission queue must be defined as a local queue with a Usage
attribute specifying that it is a transmission queue--USAGE(XMIT) in MQSC.

Putting messages on a remote queue - another way

Using a local definition of a remote queue is not the only way of putting messages on a remote
queue. Applications can specify the full queue name, which includes the remote queue manager
name, as part of the MQOPEN. In this case, a local definition of a remote queue is not required.
However, this alternative means that applications must either know or have access to the name of
the remote queue manager at run time.

Using other commands with remote queues

You can use the appropriate MQSC commands to display or alter the attributes of a remote queue
object, or you can delete the remote queue object. For example:

* Display the remote queue®s attributes.
* ALL = Display all attributes

DISPLAY QUEUE (CYAN.REMOTE.QUEUE) ALL

* ALTER the remote queue to enable puts.
* This does not affect the destination queue,
* only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

* Delete this remote queue
* This does not affect the destination queue
* only its local definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: If you delete a remote queue, you only delete the local representation of the remote
queue. You do not delete the remote queue or any messages on it.

Creating a transmission queue

A transmission queue is a local queue that is used when a queue manager forwards messages to a
remote queue manager through a message channel. The channel provides a one-way link to the
remote queue manager. Messages are queued at the transmission queue until the channel can accept
them. When you define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission queue or a
normal queue.

Default transmission queues

Optionally, you can specify a transmission queue in a remote queue object, using the XmitQName
attribute (XMITQ in MQSC). If no transmission queue is defined, a default is used. When
applications put messages on a remote queue, if a transmission queue with the same name as the
destination queue manager exists, that queue is used. If this queue does not exist, the queue specified
by the DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

For example, the following MQSC command creates a default transmission queue on
source.queue.manager for messages going to target.queue.manager:

DEFINE QLOCAL ("target.queue.manager®™) +
DESCR ("Default transmission queue for target gm") +
USAGE (XMITQ)

Applications can put messages directly on a transmission queue, or they can be put there indirectly,
for example, through a remote queue definition. See also "Creating a local definition of a remote

queue".

Remote administration

This section tells you how to administer a remote queue manager from a local queue manager. You
can implement remote administration from a local node using:

MQSC commands
PCF commands

Preparing the queues and channels is essentially the same for both methods. In this book, the
examples show MQSC commands, because they are easier to understand. However, you can convert
the examples to PCFs if you wish. For more information about writing administration programs
using PCFs, see the MQSeries Programmable System Management.

In remote administration you send MQSC commands to a remote queue manager--either
interactively or from a text file containing the commands. The remote queue manager may be on the
same machine or, more typically, on a different machine. You can remotely administer queue
managers in different MQSeties environments, including AIX, IRIX, AS/400, MVS/ESA, and

OS/2.

To implement remote administration, you must create certain objects. Unless you have specialized
requirements, you should find that the default values (for example, for message length) are
sufficient.

Preparing queue managers for remote administration

Figure 13 shows the configuration of queue managers and channels that are required for remote
administration. source.queue.manager is the SOUrte queue manager from which you can issue
MQSC commands and to which the results of these commands (operator messages) are returned, if
possible. target.queue.manager is the destination queue manager, which processes the
commands and generates any operator messages.

Figure 13. Remote administration

1
I
source.queue. manager | target. queue. manager
FUAMGSe !
MQSECecommands
: [I }
Process commands
| forexample;
replies DEFINE QLOCAL
< —— < ,
1
1
1
Localsystem | Remote system

On both systems, if you have not already done so, you must:
Create the queue manager, using the Crtmgm command.
Start the queue manager, using the Strmgm command.

Run the sample amgscoma. tst, using the ruNMQASC command.

See "Creating the default and system objects" for more information about these steps. You have to
run these commands locally or over a network facility, for example, telnet.

On the destination queue manager:

The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present. This is
created from the sample command file amgscoma. tst.

The command server must be started, using the StrmgcsvV command.
Preparing channels and transmission queues for remote administration

To run MQSC commands remotely, you must set up two channels, one for each direction, and their
associated transmission queues. This example assumes that TCP/IP is being used as the transport
type and that you know the TCP/IP address involved.

The channel source. to.target is for sending MQSC commands from the source queue manager
to the destination. Its sender is at source.queue.manager and its receiver is at queue manager
target.queue.manager. The channel target.to.source is for returning the output from
commands and any operator messages that are generated to the source queue manager. You must
also define a transmission queue for each sender. This queue is a local queue that is given the name
of the receiving queue manager. Figure 14 summarizes this configuration. However, you should be
aware that the SYSTEM.MQSC.REPLY.QUEUE is the name of the model queue in
AMQSCOMA.TST that is used by MQSC to develop its own dynamic reply queue. This queue
name varies and is internal to MQSC.

Figure 14. Setting up channels and queues for remote administration

M

|

1
i
source.quels.manager | target.queue.manager
i
1

UNMgsc
commands — —
C - |] | |:;’>| source.to.target ||::"> |] |
XMITQ =target. queue.manager | SYSTEM.ADMIN.COMMAND.QUEUE
replies - i _
< 1 | I | <‘::|| target.to.source |<::| | I |
SYSTEM.MQSC REPLY QUEUE | XMITO=source.queus. manager
Localsystem | Remote system

See the MQSeries Distributed Queuing Guide for more information about setting up remote channels.

Defining channels and transmission queues

On the source queue manager, issue these MQSC commands to define the channels and the
transmission queue:

* Define the sender channel at the source queue manager

DEFINE CHANNEL ("source.to.target®) +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ ("target.queue.manager®) +
TRPTYPE(TCP)

* Define the receiver channel at the source queue manager
DEFINE CHANNEL ("target.to.source®) +

CHLTYPE(RCVR) +

TRPTYPE(TCP)

* Define the transmission queue on the source

DEFINE QLOCAL ("target.queue.manager™) +
USAGE (XMITQ)

Issue these commands on the destination queue manager (target.queue.manager), to create
channels and the transmission queue there:

* Define the sender channel on the destination queue manager

DEFINE CHANNEL ("target.to.source®) +
CHLTYPE(SDR) +
CONNAME (RHX7721) +
XMITQ ("source.queue.manager®) +
TRPTYPE(TCP)

* Define the receiver channel on the destination queue manager
DEFINE CHANNEL ("source.to.target®) +

CHLTYPE(RCVR) +

TRPTYPE(TCP)

* Define the transmission queue on the destination gqueue manager

DEFINE QLOCAL ("source.queue.manager®™) +
USAGE (XMITQ)

Note: The TCP/IP connection names specified for the CONNAME attribute in the sender channel
definitions are for illustration only. This is the network name of the machine at the other end of the
connection. Use the values appropriate for your network.

Start the channels

The following description assumes that both ends of the channel are running on MQSeries for
IRIX. If this is not the case, refer to the relevant documentation for the non-IRIX end of the
channel.

To start the two channels, first ensure that the IRIX inetd daemons have been configured for
MQSeries on both nodes and are running at both ends of the connections.

Then start the channels, again as background processes:

On the source queue manager, type:

runmgchl -c source.to.target &

On the destination queue manager, type:

runmgchl -c target.to.source &

The runmgchl command is an MQSeties for IRIX control command. It cannot be issued using
runmgsc.

Issuing MQSC commands remotely

The command server must be running on the destination queue manager, if it is going to process
MQSC commands remotely. (This is not necessary on the source queue manager.)

On the destination queue manager, type:

strmgcsv target.queue.manager

On the source queue manager, you can then run MQSC interactively in queued mode by
typing:

runmgsc -w 30 target.queue.manager

This form of the runmMQsc command--with the -w flag--runs the MQSC commands in queued
mode, where commands are put (in a modified form) on the command-server input queue and
executed in order.

When you type in an MQSC command, it is redirected to the remote queue manager, in this case,
target.queue.manager. The timeout is set to 30 seconds; if a reply is not received within 30
seconds, the following message is generated on the local (source) queue manager:

AMQ8416: MQSC timed out waiting for a response from the command server.

At the end of the MQSC session, the local queue manager displays any timed-out responses that
have arrived. When the MQSC session is finished, any further responses are discarded.

In queued mode, you can also run an MQSC command file on a remote queue manager. For
example:

runmgsc -w 60 target queue manager < mycomds.in > report.out

where mycomds. in is a file containing MQSC commands and report.out is the report file.
Working with queue managers on MVS/ESA

You can issue MQSC commands to an MVS/ESA queue manager from an MQSeries for IRIX
queue manager. However, to do this, you must modify the runmQgsc command and the channel
definitions at the sendet.

In particular, you add the -x flag to the runmMQSsC command on an IRIX node:

runmgsc -w 30 -x target.queue.manager

On the sender channel, set the CONVERT attribute to YES. This specifies that the required data
conversion between the systems is performed at the IRIX end. The channel definition command
now becomes:

* Define the sender channel at the source queue manager on IRIX

DEFINE CHANNEL (source.to.target) +
CHLTYPE(SDR) +
CONNAME (RHX5498) +
XMITQ (target.queue.manager) +
TRPTYPE(TCP) +
CONVERT (YES)

You must also define the receiver channel and the transmission queue at the source queue manager
as before. Again, this example assumes that TCP/IP is the transmission protocol being used.

Recommendations for remote queuing

When you are implementing remote queuing:
Put the MQSC commands to be run on the remote system in a command file.
Verity your MQSC commands locally, by specifying the -v flag on the runmQ@sc command.
You cannot use FTuNMQsc to verify MQSC commands on another queue manager.
Check, as far as possible, that the command file runs locally without error.

And finally, run the command file against the remote system.

If you have problems using MQSC remotely

If you have difficulty in running MQSC commands remotely, check the following list to see if you
have:

Started the command server on the destination queue manager.
Defined a valid transmission queue.
Defined the two ends of the message channels for both:
The channel along which the commands are being sent.
The channel along which the replies are to be returned.
Specified the correct connection name (CONNAME) in the channel definition.
Started the listeners before you started the message channels.

Checked that the disconnect interval has not expired, for example, if a channel started but
then shut down after some time. This is especially important if you start the channels
manually.

See also "If you have problems with MQSC".

Using remote queue definitions for aliasing

In addition to locating a queue on another queue manager, you can also use a local definition of a
remote queue for both:

Queue manager aliasing
Reply-to queue aliasing
Both types of aliases are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the message is to arrive at its
destination.

Queue manager aliasing

Queue manager aliasing is the process by which the name of the destination queue manager--as
specified in a message--is modified by a queue manager on the message route. Queue manager

aliases are important because you can use them to control the destination of messages within a

network of queue managers.

You do this by altering the remote queue definition on the queue manager at the point of control.
The sending application is not aware that the queue manager name specified is an alias.

For more information about queue manager aliasing, see the MQSeries Distributed Queuing Guide.

Reply-to queue aliasing

Optionally, an application can specify the name of a reply-to queue when it puts a request message on a
queue. If the application that processes the message extracts the name of the reply-to queue, it
knows where to send the reply message, if required.

Reply-to queue aliasing is the process by which a reply-to queue--as specified in a request message--
is altered by a queue manager on the message route. The sending application is not aware that the
reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally its queue manager.
This in turn lets you control which route is used for reply messages.

For more information about request messages, reply messages, and reply-to queues, see the MQSeries
Application Programming Reference. For more information about reply-to queue aliasing, see the
MQSeries Distributed Queuing Guide.

Chapter 8. Security

This chapter describes the features of security control in MQSeries for IRIX and how you can
implement this control.

It contains these sections:

"Why vou need to protect MQ)Series resources'

'

'Understanding the Object Authority Manager"
"Using the OAM commands"

"Obiject Authority Manager guidelines"

'

'Understanding authorization files"

Before you begin

All queue manager resources run with these IDs:

User 1D mgm
Group mgm

You must create this IRIX user ID and group before you can access any queue manager object. For
more information about setting the IDs, see "Preparing for installation".

User IDs in MQSeries for IRIX user group mgm

If your user ID belongs to IRIX group mgm, you have all authorities to all resources. Your user ID
must belong to IRIX group mgm to be able to use all the MQSeries for IRIX control commands
except CrtMQCVX. In particular, you need this authority to:

Use the runmgsc. command to run MQSC commands.
Administer authorities on MQSeries for IRIX using the setmgaut command.

If you are sending channel commands to queue managers on a remote IRIX system, you must
ensure that your user ID is a member of IRIX group mgm on the target system. For a list of PCF and
MQSC channel commands, see "Channel command security".

It is not essential for your user ID to belong to group mgm for issuing:
PCF commands--including Escape PCFs--from an administration program.

MQI calls from an application program.

For more information

For more information about:

MQSeries for IRIX command sets, see Chapter 4. "Understanding administration command

sets".

MQSeries for IRIX control commands, see Part 2. "Reference section".

PCF commands and Escape PCFs, see the MQSeries Programmable System Management manual.

MQI calls, see the MQSeries Application Programming Guide and MQSeries Application
Programming Reference manuals.

Why you need to protect MQSeries resources

Because MQSeries queue managers handle the transfer of information that is potentially valuable,
you need the safeguard of an authority system. This ensures that the resources that a queue manager
owns and manages are protected from unauthorized access, which could lead to the loss or
disclosure of the information. In a secure system, it is essential that none of the following are
accessed or changed by any unauthorized user or application:

Connections to a queue manager.
Access to MQSeries objects such as queues, channels, and processes.

Commands for queue manager administration, including MQSC commands and PCF
commands.

Access to MQSeries messages.
Context information associated with messages.

You should develop your own policy with respect to which users have access to which resources.

Understanding the Object Authority Manager

By default, access to queue manager resources is controlled through an authorization service
installable component. This component is formally called the Object Authority Manager (OAM) for
MQSeries for IRIX. It is supplied with MQSeries for IRIX and is automatically installed and enabled
for each queue manager you create, unless you specity otherwise. In this chapter, the term OAM is
used to denote the Object Authority Manager supplied with this product.

The OAM is an installable component of the authorization setvice. Providing the OAM as an installable
service gives you the flexibility to:

Replace the supplied OAM with your own authorization service component using the

interface provided.

Augment the facilities supplied by the OAM with those of your own authorization service
component, again using the interface provided.

Remove or disable the OAM and run with no authorization service at all.
For more information on installable services, see the MQSeries Programmable System Management.

The OAM manages users' authorizations to manipulate MQSeries objects, such as queues, process
definitions, and channels. It also provides a command interface thorough which you can grant, or
revoke, access authority to an object for a specific group of users. The decision to allow access to a
resource is made by the OAM and the queue manager follows that decision. If the OAM cannot
make a decision, the queue manager prevents access to that resource.

How the OAM works

The OAM works by exploiting the security features of the underlying IRIX operating system. In
particular, the OAM uses IRIX user and group IDs. Users can access queue manager objects only if
they have the required authority.

Managing access through user groups

In the command interface, we use the term principal rather than user ID. The reason for this is that
authorities granted to a user ID can also be granted to other entities, for example, an application
program that issues MQI calls, or an administration program that issues PCF commands. In these
cases, the principal associated with the program is not necessarily the user ID that was used when
the program was started. However, in this discussion, principals and user IDs are always IRIX user
IDs.

Group sets and the primary group

Managing access permissions to MQSeries resources is based on IRIX USer groups, that is, groups of
principals. A principal can belong to one or more IRIX groups. If it belongs to more than one
group, the groups to which it belongs are known as its group set. One of the groups in the group set
is chosen to be the primary group.

The OAM maintains authorizations at the level of groups rather than individual principals. The
mapping of principals to group names is carried out within the OAM and operations are carried out
at the group level. You can, however, display the authorizations of an individual principal.

When a principal belongs to more than one group

The authorizations that a principal has are the union of the authorizations of all the groups of which
it is a member, that is, its group set. Whenever a principal requests access to a resource, the OAM
computes this union, and then checks the authorization against it. You can use the control
command Ssetmqgaut to set the authorizations for a specific principal, however, this also gives the
same authorizations to the principal's primary group.

Note: Changes to a group's membership do not come into effect until a queue manager is reset, that
is, stopped and restarted.

The group authorizations associated with a principal are cached when they are computed by the
OAM. Any changes made to a group's authorizations after it has been cached are not recognized
until the queue manager is restarted. Avoid changing any authorizations while the queue manager is
running.

Default user group

The OAM recognizes a default user group to which all users are nominally assigned. This group has
a group ID of nobody. By default, no authorizations are given to this group. Users without specific
authorizations can be granted access to MQSeries resources through this group ID.

Resources you can protect with the OAM
Through OAM you can control:

Access to MQSeries objects through the MQI. When an application program attempts to
access an object, the OAM checks if the user ID making the request has the authorization
(through its user group) for the operation requested.

In particular, this means thar queues, and the messages on queues, can be protected from
unauthorized access.

Permission to use MQSC commands; only members of user group mgm can execute queue
manager administration commands, for example, to create a queue.

Permission to use control commands; only members of user group mgm can execute control
commands, for example, creating a queue manager, starting a command setrver, or using
runmgsc.

Permission to use PCF commands.

Different groups of users may be granted different kinds of access authority to the same object. For
example, for a specific queue, one group may be allowed to perform both put and get operations;
another group may only be allowed to browse the queue (MQGET with browse option). Similarly,
some groups may have get and put authority to a queue, but are not allowed to alter or delete the
queue.

Using groups for authorizations

Using groups, rather than individual principals, for authorization reduces the amount of
administration required. Typically, a particular kind of access is required by more than one principal.
For example, you might define a group consisting of end users who want to run a particular
application. New users can be given access simply by adding the appropriate group to their IRIX
user ID.

Try to keep the number of groups as small as possible. For example, dividing principals into one
group for application users and one for administrators is a good place to start.

Caution

Remember, when you change the authorization of a principal you also change the authorization of
its primary group. This makes it especially important to ensure that you do not change the
authorization of a principal inadvertently, simply because it belongs to the same primary group as
the principal you specified when you changed an authorization. You can avoid this problem if you
'think groups' right from the start

Disabling the object authority manager

By default, the OAM is enabled. You can disable it by setting the IRIX operating system variable
MQSNOAUT before the queue manager is created, as follows:

export MQSNOAUT=yes

However, if you do this you cannot, in general, restart the OAM later. A much better approach is to
have the OAM enabled and ensure that all users and applications have access through an
appropriate user ID.

You can also disable the OAM for testing purposes only by removing the authorization service
stanza in the queue manager configuration file (gm. ini).

Using the OAM commands

The OAM provides a command interface for granting and revoking authority. Before you can use
these commands, you must be suitably authorized--your user ID must belong to the IRIX group

mgm. This group should have been set up when you installed the product, see "Preparing for
installation".

If your user ID is a member of mgm, you have a 'super user' authority to the queue manager. This
means that you are authorized to issue any MQI request or command from your user ID.

The OAM provides two commands that you can invoke from your IRIX shell to manage the
authorizations of users. These are:

setmqgaut (Set or reset authority)
dspmqaut (Display authority)

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUT], and
MQCLOSE.

Authority checking is only performed at the first instance of any of these calls, and authority is not
amended until you reset (that is, close and reopen) the object.

Therefore, any changes made to the authority of an object, using Setmqgaut do not take effect until
you reset the object.

What you specify when you use the OAM commands

The authority commands apply to the specified queue manager; if you do not specify a queue
manager, the default queue manager is used. On these commands, you must specify the object
uniquely, that is, you must specify the object name and its type. You also have to specify the
principal or group name to which the authority applies.

Authorization lists

On the setmgaut command you specify a list of authorizations. This is simply a shorthand way of
specifying whether authorization is to be granted or revoked, and which resources the authorization
applies to. Each authorization in the list is specified as a lowercase keyword, prefixed with a + or -
sign. Use a + sign to add the specified authorization or a - sign to remove the authorization. You
can specify any number of authorizations in a single command. For example:

+browse -get +put

Using the setmgaut command

Provided you have the required authorization, you can use the Setmgaut command to grant or
revoke authorization of a principal or user group to access a particular object. The following
example shows how the setmgaut command is used:

setmgaut -m saturn.queue.manager -t queue -n RED.LOCAL.QUEUE -g GroupA
+browse -get +put

In this example:
This term... Specifies the...

saturn.queue.manager (Queue manager name.

queue Object type.

RED.LOCAL .QUEUE Object name.

GroupA ID of the group to be given the authorizations.

+browse -get +put Authorization list for the specified queue. These must be no spaces

between the '+' or -' signs and the keyword.
The authorization list specifies the authorizations to be given, where:
This term... Specifies...

+browse Add authotization to browse (MQGET with browse option) messages on the
queue.

-get Remove authorization to get (MQGET) messages from the queue.

+put Add authorization to put (MQPUT) messages on the queue.

This means that applications started with user IDs that belong to IRIX user group GroupA have
these authorizations.

You can specify one or more principals and, at the same time, one or more groups. For example,
this command revokes put authority on the queue MyQueue to the principal FvUser and to groups
GroupA and GroupB.

setmgaut -m saturn.queue.manager -t queue -n MyQueue -p FvUser -g GroupA -g
GroupB —put

Note: This command also revokes put authority for all principals in the primary group of
FvUser.

For a formal definition of the command and its syntax, see setmqaut (Set/reset authotity).

Authority commands and installable services

The setmgaut command takes an additional parameter that specifies the name of the installable
service component to which the update applies. You must specify this parameter if you have
multiple installable components running at the same time. By default, this is not the case. If the
parameter is omitted, the update is made to the first installable service of that type, if one exists. By
default, this is the supplied OAM.

Access authorizations

Authorizations defined by the authorization list associated with the sSetmgaut command can be
categorized as follows:

Authorizations related to MQI calls

Authorization related administration commands

Context authorizations

General authorizations, that is, for MQI calls, for commands, or both.

Each authorization is specified by a keyword used with the setmgaut and dspmgaut commands.
These are described in setmgaut (Set/reset authority).

Display authority command

You can use the command dspmqaut to view the authorizations that a specific principal or group
has for a particular object. The flags have the same meaning as those in the Setmgaut command.
Authorization can only be displayed for one group or principal at a time. See dspmgaut (Display
authority) for a formal specification of this command.

For example, the following command displays the authorizations that the group GpAdmin has to a

process definition named Annuities on queue manager QueueManl.

dspmgaut -m QueueManl -t process -n Annuities -g GpAdmin

The keywords displayed as a result of this command identify the authorizations that are active.

Object Authority Manager guidelines

Some operations are particularly sensitive and should be limited to privileged users. For example,
Starting and stopping queue managers.

Accessing certain special queues, such as transmission queues or the command queue
SYSTEM.ADMIN.COMMAND.QUEUE.

Programs that use full MQI context options.
In general, creating and copying application queues.

User IDs

The special user ID mgm that you create is intended for use by the product only. It should never be
available to non-privileged users.

The user ID that is used for authorization checks is the IRIX logged-in user ID. However, if a
process is not logged on, for example, an inetd daemon, the effective user ID of the process is
used.

The creator of an object is the owner of that object. Public access is always NONE unless you
change it explicitly.

Queue manager directories

The directory containing queues and other queue manager data is private to the product. Objects in
this directory have IRIX user authorizations that relate to their OAM authorizations. However, do
not use standard IRIX commands to grant or evoke authorizations to MQI resources because:

MQSeries objects are not necessarily the same as the corresponding system object name. See

"Understanding MQSeries file names" for more information about this.
All objects are owned by user ID mgm.
Queues

The authority to a dynamic queue is based on--but not necessarily the same as--that of the model
queue from which it is derived. See the notes following Figure 15 for more information.

For alias queues and remote queues, the authorization is that of the object itself, not the queue to
which the alias or remote queue resolves. It is, therefore, possible to authorize a user ID to access to

an alias queue that resolves to a local queue to which the user ID has no access permissions.

You should limit the authority to create queues to privileged users. If you do not, some users may
bypass the normal access control simply by creating an alias.

Alternate user authority

Alternate user authority controls whether one user ID can use the authority of another user ID
when accessing an MQSeries object. This is essential where a server receives requests from a
program and the server wishes to ensure that the program has the required authority for the request.
The server may have the required authority, but it needs to know whether the program has the
authority for the actions it has requested.

For example:

A server program running under user ID PAYSERYV retrieves a request message from a
queue that was put on the queue by user ID USERI.

When the server program gets the request message, it processes the request and puts the
reply back into the reply-to queue specified with the request message.

Instead of using its own user ID (PAYSERYV) to authorize opening the reply-to-queue, the
server can specify some other user 1D, in this case, USER1. In this example, you can use
alternate user authority to control whether PAYSERYV is allowed to specify USER1 as an
alternate user ID when it opens the reply-to-queue.

The alternate user ID is specified on the AlternateUserld field of the object descriptor.

Note: You can use alternate user IDs on any MQSeries object. Use of an alternate user ID
does not affect the user ID used by any other resource managers.

Context authority

Context is information that applies to a particular message and is contained in the message
descriptor, MQMD, which is part of the message. The context information comes in two sections:

Identity section
This part specifies who the message came from. It consists of the following fields:
Userldentifier
AccountingToken
ApplldentityData
Origin section

This section specifies where the message came from, and when it was put onto the queue. It
consists of the following fields:

PutApplType

PutAppIName
PutDate
PutTime
ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT call is made.
This data may be generated by the application, it may be passed on from another message, or it may
be generated by the queue manager by default. For example, context data can be used by server
programs to check the identity of the requester, testing whether the message came from an
application, running under an authorized user ID.

A server program can use the Userldentifier to determine the user ID of an alternate user.

You use context authorization to control whether the user can specify any of the context options on
any MQOPEN or MQPUT1 call. For information about the context options, see the MQSeries
Application Programming Guide. For descriptions of the message descriptor fields relating to context,
see the MQSeries Application Programming Reference manual.

Remote security considerations
For remote security, you should consider:
Put authority

For security across queue managers you can specify the put authority that is used when a
channel receives a message sent from another queue manager.

Specify the channel attribute PUTAUT as follows:
DEF

Default user ID. This is the user ID that the message channel agent is running under.
CTX

The user ID in the message context.

Transmission queues

Queue managers automatically put remote messages on a transmission queue; no special
authority is required for this. However, putting a message directly on a transmission queue
requires special authorization, see Figure 15.

Channel exits
Channel exits can be used for added security.

For more information, see the MQSeries Distributed Queuing Guide.
Channel command security

Channel commands can be issued as PCF commands, MQSC commands, and control commands.

PCF commands

You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a remote IRIX system. The user ID, as specified in
the message descriptor of the PCF message, must belong to group mgm on the target system. These
commands are:

ChangeChannel
CopyChannel
CreateChannel
DeleteChannel
PingChannel
ResetChannel
StartChannel
StartChannel Initiator
StopChannel
ResolveChannel

See the MQSeries Programmable System Management manual for the PCF security requirements.

MQSC channel commands

You can issue MQSC channel commands to a remote IRIX system either by sending the command
directly in a PCF escape message or by issuing the command using runmgasc in indirect mode. The
user ID as specified in the message descriptor of the associated PCF message must belong to group
mgm on the target system. (PCF commands are implicit in MQSC commands issued from runmaqsc
in indirect mode.) These commands are:

ALTER CHANNEL
DEFINE CHANNEL
DELETE CHANNEL
PING CHANNEL
RESET CHANNEL
START CHANNEL
START CHINIT

STOP CHANNEL
RESOLVE CHANNEL

For MQSC commands issued from the runma@sc command, the user ID in the PCF message is
normally that of the current user.

Control commands for channels

For the control commands for channels, the user ID that issues them must belong to user group
mgm. These commands are:

runmgchi (Run channel initiator)

runmgchl (Run channel)

Understanding the authorization specification tables

The authorization specification tables starting in topic Figure 15 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these situations:

Applications that issue MQI calls.
Administration programs that issue MQSC commands as escape PCFs.
Adminstration programs that issue PCF commands.
In this section, the information is presented as a set of tables that specify the following:
Action to be performed
MQI option, MQSC command, or PCF command.
Access control object
Queue, process, or queue manager.
Authorization required
Expressed as an 'MQZAO_' constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in the authorization
list for the setmgaut command for the particular entity. For example, MQZAO_BROWSE
corresponds to the keyword +browse; similarly, the keyword MQZAO_SET_ALL_CONTEXT
corresponds to the keyword +setal l and so on. These constants are defined in the header file
cmgzc . h, which is supplied with the product. See "What the authorization files contain" for more
information.

MQI authorizations

An application is only allowed to issue certain MQI calls and options if the user identifier under
which it is running (or whose authorizations it is able to assume) has been granted the relevant
authorization.

Four MQI calls may require authorization checks:

MQCONN, MQOPEN, MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT], the authority check is made on the name of the object being
opened, and not on the name, or names, resulting after a name has been resolved. For example, an
application may be granted authority to open an alias queue without having authority to open the
base queue to which the alias resolves. The rule is that the check is carried out on the first definition
encountered during the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the ObjectName field
of the object descriptor. Authority is always needed for the particular object being opened; in some
cases additional queue-independent authority--which is obtained through an authorization for the
queue-manager object--is required.

Figure 15 summarizes the authorizations needed for each call.

Figure 15. Security authorization needed for MQI calls

Authorization required

Access control object

Queue object (10)

Process object

Queue manager
object

MQCONN option

Not applicable

Not applicable

MQZAO_CONNECT

MQOPEN Option

MQOO_INQUIRE

MQZAO_INQUIR
E (1)

MQZAO_INQUIRE (1)

MQZAO_INQUIRE
©)

ALL_CONTEXT (4,5)

| ALLL_ CONTEXT

MQOO_BROWSE MQZAO_BROWS |Not applicable No check
E

MQOO_INPUT_* MQZAO_INPUT |Not applicable No check

MQOO_SAVE_ MQZAO_INPUT |Not applicable No check

ALL_CONTEXT (2)

MQOO_OUTPUT MQZAO_OUTPU |Not applicable No check

(Normal queue) (3) T

MQOO_PASS_ MQZAO_PASS_ |Not applicable No check

IDENTITY_CONTEXT [IDENTITY_

4) CONTEXT

IMQOO_PASS_ IMQZAO_PASS Not applicable No check

ALL_CONTEXT

ALL_CONTEXT
(13)

MQOO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_
IDENTITY CONTEXT [IDENTITY IDENTITY
4,5) CONTEXT CONTEXT (11)
MQOO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_
ALL._CONTEXT (4,6) |ALL_CONTEXT ALL_CONTEXT (11)
MQOO_OUTPUT MQZAO_SET_ Not applicable MQZAO_SET_
(Transmission queue) (7) |ALL_CONTEXT ALL_CONTEXT (11)
MQOO_SET MQZAO_SET Not applicable No check
MQOO_ALTERNATE_ |(8) 8) MQZAO_ALTERNAT
USER_AUTHORITY E_ USER_
AUTHORITY (8,9)

MQPUT1 Option
MQPMO_PASS_ MQZAO_PASS_ |Not applicable No check
IDENTITY_CONTEXT [IDENTITY_

CONTEXT (13)
MQPMO_PASS_ MQZAO_PASS_ |Not applicable No check
ALL, CONTEXT ALLL. CONTEXT

(13)
MQPMO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_
IDENTITY CONTEXT [IDENTITY_ IDENTITY

CONTEXT (13) CONTEXT (11)
MQPMO_SET_ MQZAO_SET_ Not applicable MQZAO_SET_

ALL_CONTEXT (11)

(Transmission queue) (7)

MQZAO_SET_
ALL_CONTEXT

Not applicable

MQZAO_SET_
ALL_CONTEXT (11)

GE

E (14)

MQPMO_ALTERNATE |(12) Not applicable MQZAO_ALTERNAT
| USER_AUTHORITY E_ USER_
AUTHORITY (9)
MQCLOSE Option
MQCO_DELETE MQZAO_DELET |Not applicable Not applicable
E (14)
MQCO_DELETE_PUR MQZAO_DELET [Not applicable Not applicable

Specific notes:

(1) Either the queue, process or queue-manager object is checked, depending on the type of
object being opened.

(2) MQOO_INPUT_* must be specified as well. This is valid for a local, model, or alias queue.
(3) This check is done for all output cases except that documented in note (7).

4) MQOO_OUTPUT must also be specified.

(5) MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.

(6) MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALIL_CONTEXT, and
MQOO_SET_IDENTITY_CONTEXT are also implied by this option.

(7) This check is done for a local or model queue that has a Usage queue attribute of
MQUS_TRANSMISSION, and is being opened directly for output. It does not apply if a
remote queue is being opened (either by specifying the names of the remote queue manager and
remote queue, or by specifying the name of a local definition of the remote queue).

(8) At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_* MQOO_OUTPUT, or MQOO_SET must also be
specified. The check carried out is as for the other options specified, using the supplied alternate

user identifier for the specific-named object authority, and the current application authority for
the MQZAO_ALTERNATE_USER_IDENTIFIER check.

(9) This authorization allows any AlternateUserld to be specified.
(10) If a model queue is being opened:

MQZAO_DISPLAY authority is needed for the model queue, as well as whatever other
authorities (also for the model queue) are required for the open options specified.

MQZAO_CREATE authority is not needed to create the dynamic queue.

The user identifier used to open the model queue is automatically granted all of the
queue-specific authorities (equivalent to MQZAO_ALL) for the dynamic queue created.

(11) This authority is required for the queue-manager object, as well as for the particular queue.

(12) The check carried out is as for the other options specified, using the supplied alternate user
identifier for the specific-named queue authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

(13) An MQZAO_OUTPUT check is also carried out, if the queue does not have a Usage queue
attribute of MQUS_TRANSMISSION.

(14) The check is carried out only if both of the following are true:

A permanent dynamic queue is being closed and deleted, and

The queue was not created by the MQOPEN which returned the object handle being
used.

Otherwise, there is no check.
General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that are relevant
to the object type:

MQZAO_CONNECT
MQZAO_INQUIRE

MQZAO_SET

MQZAO_BROWSE

MQZAO_INPUT

MQZAO_OUTPUT
MQZAO_PASS_IDENTITY_CONTEXT
MQZAO_PASS_ALL_CONTEXT
MQZAO_SET_IDENTITY_CONTEXT
MQZAO_SET_ALL_CONTEXT
MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14) and MQZAO_DISPLAY are classed as administration
authorizations. They are not therefore included in MQZAO_ALL_MQI.

3. 'No check' means that no authorization checking is carried out.

4. 'Not applicable' means that authorization checking is not relevant to this operation. For
example, you cannot issue an MQPUT call to a process object.

Administration authorizations

These authorizations allow a user to issue administration commands. This can be an MQSC
command as an escape PCF message or as a PCF command itself. These methods allow a program
to send an administration command as a message to a queue manager, for execution on behalf of
that user.

Authorizations for MQSC commands in escape PCFs

Figure 16 summarizes the authorizations needed for each MQSC command that is contained in
Escape PCF.

Figure 16. MQSC commands and security authorization needed (1)

Authorization required

Access control object |Queue object Process object Queue manager
(2): object

MQSC command

IALTER object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE
CLEAR QLOCAL MQZAO_CLEAR Not applicable Not applicable
DEFINE object MQZAO_CREATE (4) |MQZAO_CREATE (4) [Not applicable
NOREPLACE (3)

DEFINE object MQZAO_CHANGE MQZAO_CHANGE [Not applicable
REPLACE (3,5)

DELETE object MQZAO_DELETE MQZAO_DELETE |[Not applicable
DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY |MQZAO_DISPLAY

Specific notes:

(1) The user identifier, under which the program (for example, runmqsc) which submits the
command is running, must also have MQZAO_CONNECT authority to the queue manager.

(2) Either the queue, process or queue-manager object is checked, depending on the type of
object.

(3) For DEFINE commands, MQZAO_DISPLAY authority is also needed for the LIKE object
if one is specified, or on the appropriate SYSTEM.DEFAULT .xxx object if LIKE is omitted.

(4) The MQZAO_CREATE authority is not specific to a particular object or object type. Create
authority is granted for all objects, for a specified queue manager, by specifying an object type of
gmgr on the setmqgaut command.

(5) This applies if the object to be replaced does in fact already exist. If it does not, the check is
as for DEFINE object NOREPLACE.

General notes:
1. To perform any PCF command, you must have DISPLAY authority on the queue manager.

2. 'The authority to execute an escape PCF depends on the MQSC command within the text of
the escape PCF message.

3. 'Not applicable' means that authorization checking is not relevant to this operation. For
example, you cannot issue a CLEAR QLOCAL on a queue manager object.

Authorizations for PCF commands
Figure 17 summarizes the authorizations needed for each PCF command.

Figure 17. PCF commands and security authorization needed (1)

Authorization required

Access control object| Queue object Process object Queue manager object

(2):

|PCF command

Change object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE
Clear Queue MQZAO_CLEAR Not applicable Not applicable
Copy object (without [MQZAO_CREATE (4) MQZAO_CREATE [Not applicable
replace) (3))

Copy object (with MQZAO_CHANGE MQZAO_CHANGE [Not applicable
replace) (3,6)

Create object (without |MQZAO_CREATE (4) MQZAO_CREATE [Not applicable
replace) (5))

Create object (with MQZAO_CHANGE IMQZAO_CHANGE |[Not applicable
replace) (5,6)

Delete object MQZAO_DELETE IMQZAO_DELETE |[Not applicable

[nquire object

MQZAO_DISPLAY

MQZAO_DISPLAY

MQZAO_DISPLAY

Inquire object names

No check

No check

No check

Reset queue statistics

MQZAO_DISPLAY
and
MQZAO_CHANGE

Not applicable

Not applicable

Specific notes:

(1) The user identifier under which the program submitting the command is running must also

have authority to connect to its local queue manager, and to open the command admin queue

for output.

(2) Either the queue, process or queue-manager object is checked, depending on the type of

object.

(3) For Copy commands, MQZAO_DISPLAY authority is also needed for the From object.

(4) The MQZAO_CREATE authority is not specific to a particular object. Two separate
authorities can be granted, one for creating queues (of any name), and one for creating processes
(also of any name). These authorities are granted for the object type (queue or process), and a
blank object name.

(5) For Create commands, MQZAO_DISPLAY authority is also needed for the appropriate
SYSTEM.DEFAULT.* object.

(6) This applies if the object to be replaced does in fact already exist. If it does not, the check is
as for Copy or Create without replace.

General notes:
1. To perform any PCF command, you must have DISPLLAY authority on the queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all of the following that are
relevant to the object type:

MQZAO_CHANGE
MQZAO_CLEAR
MQZAO_DELETE
MQZAO_DISPLAY
MQZAO_CREATE is not included, because it is not object-specific.
3. 'No check' means that no authorization checking is carried out.

4. 'Not applicable' means that authorization checking is not relevant to this operation. For
example, you cannot use a Clear Queue command on a process object.

Understanding authorization files

The information in this section is given for problem determination. Under normal circumstances, use authorization
commands to view and change authorization information.

MQSeries for IRIX uses an specific file structure to implement security. You do not have to do
anything with these files, except to ensure that all the authorization files are themselves secure.

Security is implemented by authorization files. From this perspective, there are three types of
authorization:

Authorizations applying to single object, for example, the authority to put a message on an
queue.

Authorizations applying to a class of objects, for example, the authority to create a queue.

Authorizations applying across all classes of objects, for example, the authority to perform

operations on behalf of different user.
Authorization file paths

The path to an authorization file depends on its type. When you specify an authorization for an
object, for example, the queue manager creates the appropriate authorization files. It puts these files
into a sub-directory, the path of which is defined by the queue manager name, the type of
authorization, and where appropriate, the object name.

Not all authorizations apply directly to instances of objects. For example, the authorization to create
an object applies to the class of objects rather than to an individual instance. Also, some
authorizations apply across the entire queue manager, for example, alternate user authority means
that a user can assume the authorities associated with another user.

Authorization directories
By default, the authorization directories, for a queue manager called saturn are:
/var/mgm/gmgrs/saturn/auth/queues

Authorization files for queues.
/var/mgm/gmgrs/saturn/auth/procdef

Authorization files for process definitions.
/var/mgm/gmgrs/saturn/auth/gmanager

Authorization files for the queue manager.
/var/mgm/gmgrs/saturn/auth/@aclass

Authorizations applying to all classes.
In the object directoties, the @class files hold the authorizations related to the entire class.

Note: There is a difference between @class (the authorization file that specifies authotization for a
patticular class) and @aclass (the directory that contains a file that specifies authotizations to all
classes)

The paths of the object authorization files are based on those of the object itself, where auth is
inserted ahead of the object type directory. You can use the dSpmfls command to display the path
to a specified object.

For example, if the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:

/var/mgm/gmgrs/saturn/queues/SYSTEM!DEFAULT 'LOCAL 'QUEUE

The name and path of the corresponding authorization file is:

/var/mgm/gmgrs/saturn/auth/queues/SYSTEM!DEFAULT 'LOCAL 'QUEUE

Note: In this case, the actual names of the files associated with the queue are not the same as the
name of the queue itself. See "Understanding MQSeries file names" for details.

What the authorization files contain

The authorizations of a particular group are defined by a set of stanzas in the authorization file. See
"Understanding authorization files" for more information. The authorizations apply to the object
associated with this file. For example:

groupB:
Authority=0x0040007

This stanza defines the authority for the group groupB. The authority specification is the union of

the individual bit patterns based on the following assignments:

Authorization Formal name Hexadecimal
keyword Value

connect MQZAO_CONNECT 0x00000001
browse MQZAO_BROWSE 0x00000002
get MQZAO__INPUT 0x00000004
put MQZAO_OUTPUT 0x00000008
inqg MQZAO_INQUIRE 0x00000010
set MQZAO_SET 0x00000020
passid MQZAO_PASS IDENTITY_CONTEXT 0x00000040
passall MQZAO_PASS ALL_ CONTEXT 0x00000080
setid MQZAO_SET IDENTITY_CONTEXT 0x00000100
setall MQZAO_SET_ ALL_CONTEXT 0x00000200
altusr MQZAO_ALTERNATE_USER_AUTHORITY 0x00000400
allmgi MQZAO_ALL_MQI 0x000007FF
crt MQZAO_CREATE 0x00010000
dit MQZAO_DELETE 0x00020000
dsp MQZAO_DISPLAY 0x00040000
chg MQZAO_CHANGE 0x00080000
clr MQZAO_CLEAR 0x00100000
chgaut MQZAO_AUTHORIZE 0x00800000
alladm MQZAO_ALL_ADMIN 0x009E0000
none MQZAO_NONE 0x00000000
all MQZAO_ALL Ox009EOQO7FF

These definitions are made in the header file cmgzc. h In this example, groupB has been granted

authorizations based on the hexadecimal number 0X40007. This corresponds to:

MQZAO_CONNECT 0x00000001
MQZAO_BROWSE 0x00000002
MQZAO_INPUT 0x00000004

MQZAO_DISPLAY 0x00040000

Authority 1is: 0x00040007

These access rights mean that anyone in groupB can issue the MQI calls:

MQCONN
MQGET (with browse)
MQPUT

and has DISPLAY authority for the object associated with this authorization file.
Class authorization files

The class authorization files hold authorizations that relate to the entire class. These files are
called @class and exist in the same directory as the files for specific objects. The entry
MQZAO_CRT in the @class file gives authorization to create an object in the class. This is the only
class authority.

All class authorization files.

The all class authorization file holds authorizations that apply to an entire queue manager. This
file is called @aclass and exists in the auth subdirectory of the queue manager.

The following authorizations apply to the entire queue manager and are held in the all class
authorization file.

entry...

Gives authorization to...
MQZAO_ALTUSR

Assume the identity of another user when interacting with MQSeries objects.
MQZAO_SET_ALL_CONTEXT

Set the context of a message when issuing MQPUT.
MQZAO_SET_IDENTITY_CONTEXT

Set the identity context of a message when issuing MQPUT.
Managing authorization files

Here are some pointers that you need to take into consideration when managing your authorization
files:

1. You must ensure that the authorization files are secure and not write-accessable by non-
trusted general users. See "Authorizations to authorization files".

2. To be able to reproduce your file authorizations, ensure that you do at least one of the

following:
Back up the auth subdirectory after any significant updates
Retain shell scripts containing the commands used.

3. Authorization files can be copied and edited. However, these files should not normally have
to be created or repaired manually. Should an emergency occur, the information given here
can be used to recover lost or damaged authorization files, if required.

Authorizations to authorization files

Authorization files must be readable by any principal. However, only the mgm user ID and the mgm
group should be allowed to update these files.

The permissions on authorization files, created by the OAM, are:
-rw-rw-r-- mgm mgm
Do not alter these permissions without reviewing carefully whether there are any security exposures.

To alter authorizations using the command supplied with MQSeries for IRIX, your IRIX user ID
must either be mgm or it must belong to the mgm group.

Chapter 9. Instrumentation events

You can use the MQSeries instrumentation events to monitor the operation of queue managers.
This chapter provides a short introduction to instrumentation events. For a more complete
description, see the section on instrumentation events in the MQSeries Programmable System
Management manual.

What instrumentation events are

Instrumentation events cause special messages, called event messages, to be generated whenever the
queue manager detects a predefined set of conditions. For example, the conditions giving rise to a
Queue Full event are:

Queue Full events are enabled for a specified queue.

An application issues an MQPUT call to put a message on that queue, but the call fails
because the queue is full.

Other conditions that can give rise to instrumentation events include:
A threshold limit for the number of messages on a queue is reached.
A queue is not serviced within a specified time period.
A channel instance is started or stopped.

In MQSeries for a UNIX system, an application attempts to open a queue specifying a user
ID that is not authorized.

With the exception of channel events, all instrumentation events must be enabled before they can be
generated.

Figure 18. Understanding instrumentation events. When a queue manager detects that the
conditions for an event have been met, it puts an event message on the appropriate event queue.

1. Eventconditions

2.Eventmessage
putoneventqueue

3. Evenimessage
processedby a
userapplication

Queue Manager

Forexample:

Queuefull
+ eventenabled

U

Event message

Eventqueue

g

User Application

The event message, which contains information about the conditions giving rise to the event, is put
onto an event queue. An application can retrieve the event message from this queue for analysis.

Why use events?

If you specify your event queues as a remote queues, you can put all the event queues on a single
queue manager (for those nodes that support instrumentation events). You can then use the events
generated to monitor a network of queue managers from a single node. Figure 19 illustrates this.

Figure 19. Monitoring queue managers across different platforms, on a single node

MQSeries for
MQSeries UNIX MQSeries
for MVS/ESA COPERATING SYSTEMS for 05/2

Event
messages

Event monitoring
from a single node

Types of events
MQSeries events may be categorized as follows:
Queue manager events

These events are related to the definitions of resources within queue managers. For example, an
application attempts to put a message to a queue that does not exist.

Performance events

These events are notifications that a threshold condition has been reached by a resource. For
example, a queue depth limit has been reached or, following a get, the queue was not serviced
within a predefined time limit.

Channel events

These events are reported by channels as a result of conditions detected during their operation.
For example, when a channel instance is stopped.

Trigger events

'When we discuss triggering in this and other MQSeries books, we sometimes refer to a trigger event.
This occurs when a queue manager detects that the conditions for a trigger event have been met.
For example, a queue can be configured to generate a trigger event each time a message arrives.
(The conditions for trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and, optionally, an
application program is started.

Event notification through event queues

When an event occurs, the queue manager puts an event message on the appropriate event queue, if
defined. The event message contains information about the event that you can retrieve by writing a
suitable MQI application program that:

Gets the message from the queue.

Processes the message to extract the event data. For a description of event message formats,
see the MQSeries Programmable System Management manual.

Each category of event has its own event queue. All events in that category result in an event
message being put onto the same queue.

This event queue...
Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT

Queue manager events
SYSTEM.ADMIN.PERFM.EVENT
Performance events

SYSTEM.ADMIN.CHANNEL.EVENT

Channel events

You can define event queues as either local or remote queues. If you define all your event queues as
remote queues on the same queue manager, you can centralize your monitoring activities.

Using triggered event queues

You can set up the event queues with triggers so that, when an event is generated, the event message
being put onto the event queue starts a (user-written) monitoring application. This application can
process the event messages and take appropriate action. For example, certain events may require
that an operator be informed, other events may start an application that performs some
administration tasks automatically.

Enabling and disabling events

You enable and disable events by specifying the appropriate values for the queue manager, or queue
attributes, or both, depending on the type of event. You do this using either of the following:

MQSC commands. For more information, see the MQSeries Command Reference manual.

PCF commands for queue managers on UNIX systems and OS/2. For more information,
see the MQSeries Programmable System Management manual.

Enabling an event depends on the category of the event:
Queue manager events are enabled by setting attributes on the queue manager.

Performance events as a whole must be enabled on the queue manager, or no performance
events can occur. You then enable the specific performance events by setting the
appropriate queue attribute. You also have to specify the conditions that give rise to the
event, for example, a queue depth high limit.

Channel events occur automatically; they do not need to be enabled. If you do not want to
monitor channel events, you can put-inhibit the channel event queue.

Event messages

Event messages contain information relating to the origin of an event, including the type of event,
the name of the application that caused the event, and for performance events a short statistics
summary for the queue.

The format of event messages is similar to that of PCF response messages. The message data can be
retrieved from them by user-written administration programs using the data structures described in
the MQSeries Programmable System Management manual.

Chapter 10. Transactional support and
messaging

In applications that use the MQI, put and get operations can be performed under syncpoint control.
In MQSeries for IRIX, there are two methods for initiating commit and rollback:

Notes:

Using the MQI calls MQCMIT and MQBACK. This provides a single-phase commit

facility, with only the local queue manager involved.

Using an XA-compliant external syncpoint coordinator, for example, TUXEDO, providing
a full two-phase commit. MQSeries for IRIX supports the external syncpoint coordinators
through the X/Open XA interface. This means that MQI calls can be included in a
transaction where queue manager resources are committed or rolled back as directed by the
external coordinator.

If an external coordinator is used, the MQCMIT and MQBACK calls become unavailable.

Some XA transaction managers require that each XA resource manager supplies its name.
This is the string called name in the XA switch structure. The MQSeries for IRIX resource
manager name is "MQSeries_ XA_RMI".

Interfaces to external syncpoint coordinators

In an XA configuration, MQSeries for IRIX is an XA resource manager that works like other XA
resource managers, for example, a database. An XA syncpoint coordinator can manage a set of XA
resource managers, and synchronize commit or rollback of transactions in each resource manager.
This is how it works:

1.

2.

An application informs the syncpoint coordinator that it wants to start a transaction.
The syncpoint coordinator informs the resource managers about the current transaction.

The application issues calls (for example, MQGET in syncpoint) to the resource managers
that are associated with the current transaction.

The application requests the syncpoint coordinator to commit or rollback the transaction.

The syncpoint coordinator completes the transaction by issuing the appropriate calls to each
resource manager using 2-phase commit protocols.

XA requires each resource manager to provide a structure called an XA Switch. This structure
declares the capabilities of the resource manager, and the functions which are to be called by the
syncpoint coordinator. This structure is located in the following library:

libmgmxa.a

IRIX XA library

MQSeries for IRIX supplies two versions of this structure, both of which are contained in the
library:

1. MQRMIXASwitch for static XA resource management.
2. MQRMIXASwitchDynamic for dynamic XA resource management.

The method used to link the structure to a specific XA syncpoint coordinator is defined by the
coordinator. For details, consult the documentation supplied with the XA syncpoint coordinator.

The Xa_info structure that is passed on any Xa_open call by the syncpoint coordinator specifies the
name of the queue manager that is to be administered. This takes the same form as the queue
manager name passed to MQCONN;, and may be blank if the default queue manager is to be used.

The following restrictions apply:

1. Only one queue manager may be administered by an external syncpoint coordinator at a
time. The coordinator has an effective connection to each queue manager, and is therefore
subject to the rule that only one connection is allowed at a time.

2. All applications that are run using the syncpoint coordinator can only connect to the queue
manager that is administered by the coordinator. They are already effectively connected to
that queue manager. They must issue an MQCONN to obtain a connection handle and
should issue MQDISC before they exit.

3. The queue manager administered by an external syncpoint coordinator should be started
before the coordinator starts. The syncpoint coordinator should be ended before the queue
manager is ended.

Abnormal termination of XA syncpoint coordinator

Because of the nature of the XA interface, abnormal termination of some XA syncpoint
coordinators can result in uncommitted transaction branches started before the coordinator
terminated, remaining active in MQSeries once the coordinator has been restarted.

The symptom of this is that there may be uncommitted message operations performed under these
transaction branches that cannot be resolved by normal means.

If you are using an XA syncpoint coordinator that terminates abnormally, you should stop and
restart your queue manager before restarting the syncpoint coordinator to resolve any such
transaction branches.

See the MQSeries Application Programming Guide for further information on using TUXEDO as your
syncpoint cooordinator.

Chapter 11. The MQSeries dead-letter queue
handler

A dead-letter queue (DL.Q), sometimes referred to as an undelivered-message queue, is a holding queue for

messages that cannot be delivered to their destination queues. Every queue manager in a network
should have an associated DLQ. (1)

Messages can be put on the DLQ by queue managers, by message channel agents (MCAs), and by
applications. All messages on the DLQ should be prefixed with a dead-letter header structure,
MQDLH. Messages put on the DLQ by a queue manager or by a message channel agent always
have an MQDLH; applications putting messages on the DLQ) are strongly recommended to supply
an MQDLH. The Reason field of the MQDLH structure contains a reason code that identifies why
the message is on the DLQ.

In all MQSeries environments, there should be a routine that runs regularly to process messages on
the DLQ. MQSeries supplies a default routine, called the dead-letter queue handler (the DLQ handler),
which you invoke using the runmadlq command. Instructions for processing messages on the
DLQ are supplied to the DLQ handler by means of a user-written rules table. That is, the DLQ
handler matches messages on the DL(Q) against entries in the rules table: when a DLQ message
matches an entry in the rules table, the DLQ handler performs the action associated with that entry.

This chapter begins with a description of the DLQ handler, then describes the contents and syntax
of the rules table. The chapter concludes with an example rules table.

Invoking the DLQ handler

You invoke the DLQ handler using the runmqdlg command. You can supply the name of the
DLQ you want to process and the name of that queue's manager as parameters to runmaqdlq.
Alternatively, you can include those values in the rules table. (However, specifying the names of the
DLQ and its queue manager as parameters to runmaqdlq makes it possible for a single rules table to
be used for multiple DL.Qs.) The runmqdlg command takes its input from stdin: you associate the
rules table with runmqdlq by redirecting stdin from the rules table.

In order to run the DLQ handler, you must be authorized to access both the DLQ itself and any
message queues to which messages on the DLLQ are forwarded. Furthermore, if the DLLQ handler is
to be able to put messages on queues with the authority of the user ID in the message context, you
must be authorized to assume the identity of other users.

For more information about the runmqdlq command, see runmqdlg (Run dead-letter queue

handler).
The sample DLQ handler, AMQSDLQ

In addition to the DL.Q handler invoked using the runmqgdlq command, MQSeries provides the
source of a sample DLQ handler, AMQSDLQ), whose function is similar to that provided via
runmqdlg. You can customize AMQSDLQ to provide a DLQ handler that meets specific, local

requirements. For example, you might decide that you want a DLLQ) handler that can process
messages without dead-letter headers. (Both the default DLQ) handler and the sample, AMQSDLQ,
process only those messages on the DLQ) that begin with a dead-letter header, MQDLH. Messages
that do not begin with an MQDLH are identified as being in error, and remain on the DLQ
indefinitely.)

The source of AMQSDLAQ) is supplied in the directory:

C:\MQM\TOOLS\C\SAMPLES\DLQ

The DLQ handler rules table

The DLQ handler rules table defines how the DLQ handler is to process messages that arrive on the
DLQ. There are two types of entry in a rules table:

The first entry in the table, which is optional, contains control data.

All other entries in the table are rules for the DLQ handler to follow. Each rule consists of a
pattern (a set of message characteristics) that a message is matched against, and an action to be
taken when a message on the DLQ) matches the specified pattern. There must be at least one
rule in a rules table.

Each entry in the rules table comprises one or more keywords.
Control data

Figure 20 shows an example control-data entry in a DLQ handler rules table.

Figure 20. An example control-data entry in the DLQ handler rules table. The rules table in
which this control-data entry appears applies to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

INPUTQ(ABC1 .DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE .MANAGER)

The keywords that you can include in a control-data entry are described in the remainder of this
section. Please note the following:

The default value for a keyword, if any, is underlined.
The vertical line (|) separates alternatives, only one of which can be specified.
All keywords are optional.
INPUTQ (QueueName]'.")
Is the name of the DLQ to which this rules table applies.

INPUTQ (' "), which is the default value, causes the name of the DLQ belonging to the queue
manager whose name is supplied as a parameter to the runmqgdlg command to be used. If no

queue manager name is supplied as a parameter to runmqdlq, the DLQ belonging to the queue
manager named on the INPUTQM keyword is used. An INPUTQ value specified as a
parameter to the runmadlq command overrides any INPUTQ value in the rules table.

INPUTQM (QueueManagerName|'")

Is the name of the queue manager that owns the DLQ named on the INPUTQ keyword.
INPUTQM ('), which is the default value, requests that the default queue manager for the
installation be used. An INPUTQM value specified as a parameter to the runmqdlq command
overrides any INPUTQM value in the rules table.

RETRYINT (Interval | 60)

Is the interval, in seconds, at which the DLLQ handler should attempt to reprocess messages on
the DLQ that could not be processed at the first attempt, and for which repeated attempts have
been requested. By default, the retry interval is 60 seconds.

WAIT (YES|NO|nnn)

Indicates whether the DLQ handler should wait for further messages to arrive on the DLQ
when it detects that there are no further messages that it can process.

YES
Causes the DLQ handler to wait indefinitely.
NO

Causes the DLQ handler to terminate when it detects that the DLQ is either empty or contains
no messages that it can process.

nnn

Causes the DLQ handler to wait for nnn seconds for new work to arrive before terminating,
after it detects that the queue is either empty or contains no messages that it can process.

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT (nnn)
for DLQs that have a low level of activity. If the DLQ handler is allowed to terminate, you are
recommended to reinvoke it by means of triggering.

As an alternative to including control data in the rules table, you can supply the names of the DLQ
and its queue manager as input parameters of the runmqdlg command. If any value is specified
both in the rules table and on input to the runmqdlg command, the value specified on the
runmqdlg command takes precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry in the table.
Rules (patterns and actions)
Figure 21 shows an example rule from a DLQ handler rules table.

Figure 21. An example rule from a DLQ handler rules table. This rule instructs the DI.Q handler

to make 3 attempts to deliver to its destination queue any persistent message that was put on the
DLQ because MQPUT and MQPUT1 were inhibited.

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
CTION (RETRY) RETRY (3)

All keywords that you can use on a rule are described in the remainder of this section. Please note
the following:

The default value for a keyword, if any, is underlined. For most keywords, the default value is *
(asterisk), which matches any value.

The vertical line (|) separates alternatives, only one of which can be specified.
All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those against which
messages on the DLQ) are matched), and then describes the action keywords (those that determine
how the DLQ handler is to process a matching message).

The pattern-matching keywords

The pattern-matching keywords, which you use to specify values against which messages on the
DLQ are matched, are described below. All pattern-matching keywords are optional.

APPLIDAT (ApplldentityDatal*)

Is the Appl ldentityData value specified in the message descriptor, MQMD, of the message
on the DL.Q.

APPLNAME (PutAppIName | *)

Is the name of the application that issued the MQPUT or MQPUT1 call, as specified in the
PutAppIName field of the message descriptor, MQMD, of the message on the DLQ.

APPLTYPE (PutApplType|*)

Is the PutAppIType value specified in the message descriptor, MQMD, of the message on the
DLQ.

DESTQ (QueueName | *)

Is the name of the message queue for which the message is destined.
DESTQM (QueueManagerName | *)

Is the name of the queue manager of the message queue for which the message is destined.
FEEDBACK (Feedback|*)

When the MsgType value is MQFB_REPORT, Feedback describes the nature of the report.

Symbolic names can be used. For example, you can use the symbolic name MQFB_COA to
identify those messages on the DLQ) that require confirmation of their arrival on their
destination queues.

FORMAT (Format]*)

Is the name that the sender of the message uses to describe the format of the message data.
MSGTYPE (MsgType | *)

Is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic name MQMT_REQUEST
to identify those messages on the DLQ) that require replies.

PERSIST (Persistence|*)

Is the persistence value of the message. (The persistence of a message determines whether it
survives restarts of the queue manager.)

Symbolic names can be used. For example, you can use the symbolic name
MQPER_PERSISTENT to identify those messages on the DLQ) that are persistent.

REASON (ReasonCode | *)
Is the reason code that describes why the message was put to the DLQ.

Symbolic names can be used. For example, you can use the symbolic name MQRC_Q_FULL to
identify those messages placed on the DLQ because their destination queues were full.

REPLYQ (QueueName | *)

Is the name of the reply-to queue specified in the message descriptor, MQMD, of the message
on the DLQ.

REPLYQM (QueueManagerName | *)

Is the name of the queue manager of the reply-to queue, as specified in the message descriptor,
MQMD, of the message on the DLQ.

USERID (Userldentifier|*)

Is the user ID of the user who originated the message on the DLQ), as specified in the message
descriptor, MQMD.

The action keywords

The action keywords, which you use to describe how a matching message is to be processed, are
described below.

ACTION (DISCARD | IGNORE |RETRY | FWD)

Is the action to be taken for any message on the DLQ that matches the pattern defined in this

rule.
IGNORE
Causes the message to be left on the DLQ.
DISCARD
Causes the message to be deleted from the DLQ.
RETRY
Causes the DLQ handler to try again to put the message on its destination queue.
FWD
Causes the DLQ handler to forward the message to the queue named on the FWDQ keyword.

The ACTION keyword must be specified. The number of attempts made to implement an action is
governed by the RETRY keyword. The interval between attempts is controlled by the RETRYINT
keyword of the control data.

FWDQ (QueueName | &DESTQ | &REPLYQ)

Is the name of the message queue to which the message should be forwarded when ACTION
(FWD) is requested.

QueueName

Is the name of a message queue. FWDQ('") is not valid.

&DESTQ

Causes the queue name to be taken from the DestQName field in the MQDLH structure.

&REPLYQ
Causes the name to be taken from the ReplyToQ field in the message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ (&REPLYQ) matches a message with a
blank ReplyToQ field, you can specify REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName | & DESTQM | &REPLYQM| ")

Identifies the queue manager of the queue to which a message is to be forwarded.

QueueManagerName

Is the name of the queue manager of the queue to which a message is to be forwarded when
ACTION (FWD) is requested.

&DESTQM

Causes the queue manager name to be taken from the DestQMgrName field in the MQDLH
structure.

&REPLYQM
Causes the name to be taken from the ReplyToQMgr field in the message descriptor, MQMD.

FWDQM(' "), which is the default value, identifies the local queue manager.

HEADER (YES|NO)

Specifies whether the MQDLH should remain on a message for which ACTION (FWD) is
requested. By default, the MQDLH remains on the message. The HEADER keyword is not
valid for actions other than FWD.

PUTAUT (DEF | CTX)
Defines the authority with which messages should be put by the DLQ handler:

DEF

Causes messages to be put with the authority of the DLQ handler itself.

CTX

Causes the messages to be put with the authority of the user ID in the message context. If you
specify PUTAUT (CTX), you must be authorized to assume the identity of other users.

RETRY (RetryCount]|1)

Is the number of times, in the range 1-999 999 999, that an action should be attempted (at the
interval specified on the RETRYINT keyword of the control data).

Note: The count of attempts made by the DLQ handler to implement any particular rule is
specific to the current instance of the DLQ handler: the count does not persist across
restarts. If the DLQ handler is restarted, the count of attempts made to apply a rule is
reset to zero.

Rules table conventions

The rules table must adhere to the following conventions regarding its syntax, structure, and
contents:

A rules table must contain at least one rule.
Keywords can occur in any order.

A keyword can be included once only in any rule.
Keywords are not case-sensitive.

A keyword and its parameter value must be separated from other keywords by at least one
blank or comma.

Any number of blanks can occur at the beginning or end of a rule, and between keywords,
punctuation, and values.

Each rule must begin on a new line.

For reasons of portability, the significant length of a line should not be greater than 72
characters.

Use the plus sign (+) as the last nonblank character on a line to indicate that the rule
continues from the first nonblank character in the next line. Use the minus sign (-) as the last
nonblank character on a line to indicate that the rule continues from the start of the next
line. Continuation characters can occur within keywords and parameters.

Comment lines, which begin with an asterisk (*), can occur anywhere in the rules table.
Blank lines are ignored.

Each entry in the DLQ handler rules table comprises one or more keywords and their
associated parameters. The parameters must follow these syntax rules:

- Bach parameter value must include at least one significant character. The delimiting
quotation marks in quoted values are not considered significant. For example, these
parameters are valid:

FORMAT("ABC*™) 3 significant characters
FORMAT (ABC) 3 significant characters
FORMAT("A™) 1 significant character
FORMAT(A) 1 significant character
FORMAT(® ™) 1 significant character

These parameters are invalid because they contain no significant characters:

FORMAT(")
FORMAT/()
FORMAT()

FORMAT

- Wildcard characters are supported: you can use the question mark (?) in place of any
single character, except a trailing blank; you can use the asterisk (*) in place of zero or
more adjacent characters. The asterisk (*) and the question mark (?) are always
interpreted as wildcard characters in parameter values.

- Wildcard characters cannot be included in the parameters of these keywords: ACTTON,
HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

- Trailing blanks in parameter values, and in the corresponding fields in the message on
the DLQ), are not significant when performing wildcard matches. However, leading and
embedded blanks within strings in quotation marks are significant to wildcard matches.

- Numeric parameters cannot include the question mark (?) wildcard character. The
asterisk (*) can be used in place of an entire numeric parameter, but cannot be included
as part of a numeric parameter. For example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE(*) Any message type is eligible
MSGTYPE(™*™) Any message type is eligible

However, MSGTYPE("2*") is not valid, because it includes an asterisk (*) as part of a
numeric parameter.

- Numeric parameters must be in the range 0-999 999 999. If the parameter value is in this
range, it is accepted, even if it is not currently valid in the field to which the keyword
relates. Symbolic names can be used for numeric parameters.

- If a string value is shorter than the field in the MQDLH or MQMD to which the
keyword relates, the value is padded with blanks to the length of the field. If the value,
excluding asterisks, is longer than the field, an error is diagnosed. For example, these are
all valid string values for an 8-character field:

" ABCDEFGH™" 8 characters
"A*C*E*G*I" 5 characters excluding asterisks
"FA*CFE*G* I *K*M*0*" 8 characters excluding asterisks

- Strings that contain blanks, lowercase characters, or special characters other than period
(), forward slash (/), underscore (), and percent sign (%) must be enclosed in single
quotation marks. Lowercase characters not enclosed in quotation marks are folded to
uppercase. If the string includes a quotation, two single quotation marks must be used to
denote both the beginning and the end of the quotation. When the length of the string is
calculated, each occurrence of double quotation marks is counted as a single character.

How the rules table is processed

The DLQ handler searches the rules table for a rule whose pattern matches a message on the DLQ.

The search begins with the first rule in the table, and continues sequentially through the table. When
a rule with a matching pattern is found, the action from that rule is attempted. The DLQ handler
increments the retry count for a rule by 1 whenever it attempts to apply that rule. If the first attempt
fails, the attempt is repeated until the count of attempts made matches the number specified on the
RETRY keyword. If all attempts fail, the DLLQ handler searches for the next matching rule in the
table. This process is repeated for subsequent matching rules until an action is successful. When
each matching rule has been attempted the number of times specified on its RETRY keyword, and
all attempts have failed, ACTION (IGNORE) is assumed. ACTION (IGNORE) is also assumed if
no matching rule is found.

Please note the following:

1. Matching rule patterns are sought only for messages on the DLQ that begin with an MQDILH.
Messages that do not begin with an MQDLH are reported periodically as being in error, and
remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule may consist of an action only.
Note, however, that action-only rules are applied to all messages on the queue that have
MQDLHs and that have not already been processed in accordance with other rules in the table.

3. The rules table is validated when the DLQ handler is started, and errors are flagged at that time.
(Error messages issued by the DLQ handler are described in Appendix G. "Messages".) You can

make changes to the rules table at any time, but those changes do not come into effect until the
DLQ handler is restarted.

4. 'The DLQ handler does not alter the content of messages, of the MQDLH, or of the message

descriptor. The DLQ handler always puts messages to other queues with the message option
MQPMO_PASS_ALIL_CONTEXT.

5. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

6. Multiple instances of the DLQ handler could run concurrently against the same queue, using the
same rules table. However, it is more usual for there to be a one-to-one relationship between a

DLQ and a DLQ handler.
Ensuring that all DLQ messages are processed

The DLQ handler keeps a record of all messages on the DLQ) that have been seen but not removed.
If you use the DLQ handler as a filter to extract a small subset of the messages from the DLQ, the
DLQ handler still has to keep a record of those messages on the DLQ) that it did not process. Also,
the DLQ handler cannot guarantee that new messages arriving on the DLQ will be seen, even if the
DLQ is defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a periodic rescan
of the DLQ) is performed to check all messages. For these reasons, you should try to ensure that the
DLQ contains as few messages as possible: if messages that cannot be discarded or forwarded to
other queues (for whatever reason) are allowed to accumulate on the queue, the workload of the
DLQ handler increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For example, try not
to use ACTION (IGNORE), which simply leaves messages on the DLQ. (Remember that
ACTION (IGNORE) is assumed for messages that are not explicitly addressed by other rules in the

table.) Instead, for those messages that you would otherwise ignore, use an action that moves the
messages to another queue. For example:

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, the final rule in the table should be a catchall to process messages that have not been
addressed by earlier rules in the table. For example, the final rule in the table could be something like
this:

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This action causes messages that fall through to the final rule in the table to be forwarded to the
queue REALLY .DEAD.QUEUE, where they can be processed manually. If you do not have such a rule,
messages are likely to remain on the DLQ) indefinitely.

An example DLQ handler rules table

Figure 22 shows an example rules table that contains a single control-data entry and several rules.

Figure 22. An example rules table for the DLQ handler

X
A AA A AR A AAA LA AAAAAAAAAAAAALAAAAAAAAAAAAAXAAAAAAAAA A XA AXX

* An example rules table for the runmgdlq command *

EaRa R R R R Sk S S S S S R o SR R S S R R SRR S SR AR R AR R S SR R R R R R R R R AR R R AR R SR R R SRR R R R R R R R R AR R SR R

Control data entry

IT no queue manager name is supplied as an explicit parameter to
runmgdlq, use the default queue manager for the machine.

IT no queue name is supplied as an explicit parameter to runmqdlq,
use the DLQ defined for the local queue manager.

R

nputgm(® ") inputq(” ")

We include rules with ACTION (RETRY) first to try to
deliver the message to the intended destination.

EEE)

IT a message is placed on the DLQ because its destination
queue is full, attempt to forward the message to its
destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

EEENEE:

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited

*

X

X

EEE)

*

X

X

EEENENENE EEBENEIEEE

Ok R % % X X X % F

condition, attempt to forward the message to its
destination queue. Make 5 attempts at approximately
60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

The AAAA corporation are always sending messages with incorrect
addresses. When we find a request from the AAAA corporation,

we return it to the DLQ (DEADQ) of the reply-to queue manager
(&REPLYQM) .

The AAAA DLQ handler attempts to redirect the message.

[MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +

ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

The BBBB corporation never do things by half measures. IT
the queue manager BBBB.1 is unavailable, try to
send the message to BBBB.2

DESTQM(bbbb.1) +

action(fwd) fwdgq(&DESTQ) fwdgm(bbbb.2) header(no)

The CCCC corporation considers itself very security

conscious, and believes that none of its messages

will ever end up on one of our DLQs.

Whenever we see a message from a CCCC queue manager on our

DLQ, we send it to a special destination in the CCCC organisation
where the problem is investigated.

REPLYQM(CCCC.*) +

ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

Messages that are not persistent run the risk of being
lost when a queue manager terminates. If an application
is sending nonpersistent messages, it should be able

to cope with the message being lost, so we can afford to
discard the message.

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

For performance and efficiency reasons, we like to keep
the number of messages on the DLQ small.

IT we receive a message that has not been processed by
an earlier rule in the table, we assume that it

requires manual intervention to resolve the problem.

Some problems are best solved at the node where the
problem was detected, and others are best solved where
the message originated. We don"t have the message origin,
but we can use the REPLYQM to identify a node that has
some interest in this message.

* Attempt to put the message onto a manual intervention
* queue at the appropriate node. If this fails,

* put the message on the manual intervention queue at
* this node.

REPLYQM("?*") +
ACTION(FWD) FWDQ(DEADQ.MANUAL . INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL . INTERVENTION)

Chapter 12. Recovery and restart

A messaging system ensures that messages entered into the system are delivered to their destination.
This means that it must provide a method of tracking the messages in the system, and of recovering
messages if the system fails for any reason.

MQSeries ensures that messages are not lost by maintaining records (logs) of the activities of the
queue managers that handle the receipt, transmission, and delivery of messages. It uses these logs for
three types of recovery:

1. Restart recovery, when you stop MQSeries in a planned way.
2. Crash recovery, when MQSeries is stopped by an unexpected failure.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when the queue manager
stopped. Any in-flight transactions are rolled back, removing from the queues any messages that
were not committed at the time the queue manager stopped. Recovery restores all persistent
messages; non-persistent messages are lost during the process.

And that is recovery in a nutshell. The rest of this chapter introduces the concepts of recovery and
restart in more detail and then tells you how to recover if problems occur. It covers the following
topics:

"Making sure that messages are not lost (logging)".

"Using the log for recovery".

Making sure that messages are not lost (logging)

MQSeries records all significant changes to the data controlled by the queue manager in a log. This
includes the creation and deletion of objects, all persistent message updates, transaction states,
changes to object attributes, and channel activities. Therefore, the log contains the information you
need to recover all updates to message queues by:

Keeping records of queue manager changes.

Keeping records of queue updates for use by the restart process.

Enabling you to restore data after a hardware or software failure.
This section tells you more about logs, including:

"What logs look like"

"Types of logging"

"Checkpointing--ensuring complete recovery"

"Media recovery"

"Managing logs"

"Managing log files"

What logs look like

An MQSeries log consists of two components:
1. One or more files of log data
2. Alog control file

There are a number of log files which contain the data being recorded. You can define the number
and size (as explained in Chapter 13. "Understanding configuration files"), or take the system default
of 3 files, each 4MB in size.

When you create a queue manager, the number of log files you define is the number of primary log
files allocated. If you do not specify a number, the default value is used. If you have not changed the
log path, they are created in the directory:

/var/mgm/1og/QmName

MQSeries starts with these primary log files, but, if the log starts to get full, allocates secondary log
files. It does this dynamically, and removes them when the demand for log space reduces. By
default, up to 2 secondary log files can be allocated, providing a further 8MB of disk space. The

default number can also be changed, see Chapter 13. "Understanding configuration files".

The log control file contains the information needed to monitor the use of log files: their size and
location, the name of the next available file, and so on.

Note: You should ensure that the logs created when you start a queue manager are large
enough to accommodate the size and volume of messages that your applications will
handle. The default log numbers and sizes will require modification to meet your
requirements. How to change the default values is described on page "Configuring the
logs".

Types of logging

In MQSeries, the number of files that are used for logging depends on the file size, the number of
messages you have received, and the length of the messages. There are two ways of maintaining
records of queue manager activities:

Circular logging

Circular logging keeps all restart data in a ring of log files. Logging fills the first file in the ring, then
moves on to the next, and so on, until all the files are filled. It then goes back to the first file in the
ring and starts again. This continues as long as the product is in use and has the advantage that you
never run out of log files.

The above is a simple explanation of circular logging. However, there is a complication. The log
entries required to restart the queue manager without loss of data are kept until no longer required
to ensure queue manager data recovery. The mechanism for releasing log files for reuse is described
in "Checkpointing--ensuring complete recovery". For now, you should know that MQSeries uses
secondary log files to extend the log capacity as necessary.

You use circular logging if all you want is restart recovery, using the log to roll back transactions that
were in progress when the system stopped.

Linear logging

Linear logging keeps the log data in a continuous sequence of files. Space is not reused, so you can
always retrieve any record logged from the time that the queue manager was created.

As disk space is finite, you may have to think about some form of archiving. It is an administrative
task to manage your disk space for the log, reusing or extending the existing space as necessary.

The number of log files used with linear logging can be very large depending on your message flow
and the age of your queue manager. However, there are a number of files which are said to be active.
Active files contain the log entries required to restart the queue manager. The number of active log
files is usually the same as the number of primary log files as defined in the configuration files. (See

Chapter 13. "Understanding configuration files" for further details of how to define the number.)

The key event that controls whether a log file is termed active or not is a theckpoint. An MQSeries
checkpoint is a group of log records containing information to allow a successful restart of the
queue manager. Any information recorded previously is not required to restart the queue manager
and can therefore be termed inactive. (See "Checkpointing--ensuring complete recovery" for further
information about checkpointing.)

You must decide when inactive log files are no longer required. You may select to archive them, or
you may delete them as being no longer of interest to your operation. Refer to "Managing logs" for
further information about the disposition of log files.

If a new checkpoint is recorded in the second, or later, primary log file, then the first file becomes
inactive and a new primary file is formatted and added to the end of the primary pool, restoring the
number of primary files available for logging. In this way the primary log file pool can be seen to be
a current set of files in an ever extending list of log files. Again, it is an administrative task to manage
the inactive files according to the requirements of your operation.

Although secondary log files are defined for linear logging, they are not used in normal operation. If
a situation should arise when, probably due to long lived transactions, it is not possible to free a file
from the active pool because it may still be required for a restart, secondary files are formatted and
added to the active log file pool.

If the number of secondary files available is used up, requests for most further operations requiring
log activity will be refused with an MQRC_RESOURCE_PROBLEM being returned to the
application.

You use linear logging if you want both restart recovery and media or forward recovery (recreating
lost or damaged data by replaying the contents of the log).

Both types of logging can cope with unexpected loss of power assuming that there is no hardware
failure.

Checkpointing--ensuring complete recovery

Persistent updates to message queues happen in two stages. First, the records representing the
update are written to the log, then the queue file is updated. The log files can thus become more up-
to-date than the queue files. To ensure that restart processing begins from a point of consistency,
MQSeries uses checkpoints. A checkpoint is a point in time when the record described in the log is
the same as the record in the queue. The checkpoint itself consists of the series of log records
needed to restart the queue manager: for example, the state of all transactions active at the time of
the checkpoint.

Checkpoints are generated automatically by MQSeries. They are taken when the queue manager
starts, at shutdown, when logging space is running low, and after every 1000 operations logged. As
the queues handle further messages, the checkpoint record becomes inconsistent with the current
state of the queues.

When MQSeries is restarted, it locates the latest checkpoint record in the log. This information is
held in the checkpoint file that is updated at the end of every checkpoint. The checkpoint record
represents the most recent point of consistency between the log and the data. The data from this
checkpoint is used to rebuild the queues as they existed at the checkpoint time. When the queues are
recreated, the log is then played forward to bring the queues back to the state they were in before
system failure or close down.

MQSeries maintains internal pointers to the head and tail of the log. It moves the head pointer to
the most recent checkpoint that is consistent with recovering message data.

Checkpoints are used to make recovery more efficient, and to control the reuse of primary and
secondary log files.

Figure 23. Checkpointing. For simplicity, only the ends of the log files are shown.

LogFile1
[
Cheackpoint Fut Get Get Fut
1
Hegd 1
LogFile2
[
- Get Put Checkpoint Get Put
2
y
Head?2
LogFile3
Get Put Get Put Get

In Figure 23, all records before the latest checkpoint, checkpoint 2, are no longer needed by
MQSeries. The queues can be recovered from the checkpoint information and any later log entries.
For circular logging, any freed files prior to the checkpoint can be reused. For a linear log, the freed
log files no longer need to be accessed for normal operation and become inactive. In the example,
the queue head pointer is moved to point at the latest checkpoint, Checkpoint 2, which then
becomes the new queue head, head 2. Log File 1 can now be reused.

Figure 24. Checkpointing with a long-running transaction. For simplicity, only the ends of the
log files are shown.

LogFile1
[
Checkpoint FPut Get Get Put
1
I JVL
Head LH1
LogFile2
| Get Put Checkpoint Get Put
2
LogFile3
-
L Get Put Checkpoint Get Put
3
Il 3 &
v \Y
Head?2 LR2

Figure 24 shows how a long running transaction affects reuse of log files. In the example, a long
running transaction has caused an entry to the log, shown as LR 1, after the first checkpoint shown.
The transaction does not complete, shown as LR 2, until after the third checkpoint. All the log
information from LR 1 onwards is retained to allow recovery of that transaction, if necessary, until it
has completed.

After the long-running transaction has completed, at LR 2, the head of the log is moved to
checkpoint 3, the latest logged checkpoint. The files containing log records prior to checkpoint 3,
Head 2, are no longer needed. If you are using circular logging, the space can be reused.

If the primary log files are completely filled before the long-running transaction completes,

secondary log files are used to avoid the risk of a log full situation if possible.

When the log head is moved and you are using circular logging, the primary log files may become
eligible for reuse and the logger, after filling the current file, reuses the first primary file available to
it. If instead you are using linear logging, the log head is still moved down the active pool and the
first file becomes inactive. A new primary file is formatted and added to the bottom of the pool in
readiness for future logging activities.

Managing logs

Over time, some of the log records written become unnecessary for restarting the queue manager,
and the queue manager reclaims freed space in the log files. This activity is transparent to the user
and you do not usually see the amount of disk space used reduce because the space allocated is
quickly reused.

Of the log records, only those written since the start of the last complete checkpoint, and those
written by any active transactions, are needed to restart the queue manager. Thus, the log may fill if a
checkpoint has not been taken for a long time, or if a long-running transaction wrote a log record a
long time ago. The queue manager tries to take checkpoints sufficiently frequently to avoid the first
problem.

When a long-running transaction fills the log, attempts to write log records fail and some MQI calls
return MQRC_RESOURCE_PROBLEM. (Space is reserved to commit ot rollback all in-flight
transactions, so MQCMIT or MQBACK should not fail.)

The queue manager rolls back transactions that consume too much log space. An application whose
transaction is rolled back in this way is unable to petform subsequent MQPUT or MQGET
operations specifying syncpoint under the same transaction. An attempt to put or get a message
under syncpoint in this state returns MQRC_BACKED_OUT. The application may then issue
MQCMIT, which returns MQRC_BACKED_OUT, or MQBACK and start a new transaction.
When the transaction consuming too much log space has been rolled back, its log space is released
and the queue manager continues to operate normally.

If the log fills, a message is issued (AMQ7463). In addition, if the log fills because a long-running
transaction has prevented the space being released, message AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous housekeeping processes
can handle them, message AMQ7466 is issued. If you see this message, you should increase the
number of log files or reduce the amount of data being processed by the queue manager.

What happens when a disk gets full

The queue manager logging component can cope with a full disk, and with full log files. If the disk
containing the log fills, the queue manager issues message AMQ6708 and an error record is taken.

The log files are created at their maximum size, rather than being extended as log records are written
to them. This means that MQSeries can only run out of disk space when it is creating a new file. It
therefore cannot run out of space when it is writing a record to the log. MQSeries always knows

how much space is available in the existing log files and manages the space within the files
accordingly.

If you fill the drive containing the log files, you may be able to free some disk space. If you are using
a linear log, there may be some inactive log files in the log directory which you can copy to another
drive or device. If you still run out of space, check that the configuration of the log in the queue
manager configuration file is correct. You may be able to reduce the number of primary or
secondary log files so that the log does not outgrow the available space. Note that it is not possible
to alter the size of the log files for an existing queue manager. The queue manager assumes that all
log files are the same size.

Managing log files

If you are using circular logging, ensure that there is sufficient space to hold the log files. You do
this when you configure your system (see "Log configuration stanzas"). The amount of disk space
used by the log does not increase beyond the configured size, including space for secondary files to
be created when required.

If you are using a linear log, the log files are added continually as data is logged, and the amount of
disk space used increases with time. If the rate of data being logged is high, disk space is consumed
rapidly by new log files.

Over time, the older log files for a linear log are no longer required to restart the queue manager or
perform media recovery of any damaged objects. Periodically, the queue manager issues a pair of
messages to indicate which of the log files is required:

Message AMQ7467 gives the name of the oldest log file needed to restart the queue
manager. This log file and all newer log files must be available during queue manager restart.

Message AMQ7468 gives the name of the oldest log file needed to do media recovery.

Any log files older than these do not need to be online. You can copy them to an archive medium
such as tape for disaster recovery, and remove them from the active log directory. Any log files
needed for media recovery but not for restart can also be off-loaded to an archive.

If any log file that is needed cannot be found, operator message AMQG6767 is issued. Make the log
file, and all subsequent log files, available to the queue manager and retry the operation.

Note: When performing media recovery, all the required log files must be available in the log
file directory at the same time. Make sure that you take regular media images of any
objects you may wish to recover to avoid running out of disk space to hold all the
required log files.

Log file location

When choosing a location for your log files, remember that operation is severely impacted if
MQSeries fails to format a new log because of lack of disk space.

If you are using a circular log, ensure that there is sufficient space on the drive for at least the
configured primary log files. You should also leave space for at least one secondary log file which is
needed if the log has to grow.

If you are using a linear log, you should allow considerably more space; the space consumed by the
log increases continuously as data is logged.

Ideally, the log files should be placed on a separate disk drive from the queue manager data. This has
benefits in terms of performance. It may also be possible to place the log files on multiple disk
drives in a mirrored arrangement. This gives protection against failure of the drive containing the
log. Without mirroring, you could be forced to go back to the last backup of your MQSeries system.

Using the log for recovery

There are several ways that your data can be damaged. MQSeries for IRIX helps you recover from:
A damaged data object
A power loss in the system
A communications failure
A damaged log volume

This section looks at how the logs are used to recover from these problems, including:

"Recovering from problems"

"Recovery scenarios"

Recovering from problems

MQSeries can recover from both communications failures and loss of power. In addition, it is
sometimes possible to recover from other types of problem, such as inadvertent deletion of a file.

In the case of a communications failure, messages simply remain on queues until they are removed
by a receiving application. If the message is being transmitted, it remains on the transmission queue
until it can be successfully transmitted. To recover from a communications failure, it is normally
sufficient simply to restart the channels using the link that failed.

If you lose power, when the queue manager is restarted MQSeries restores the queues to their state
at the time of the failure. This ensures that no persistent messages are lost. Nonpersistent messages
are discarded; they do not survive when MQSeries stops.

There are ways in which an MQSeries object can become unusable, for example due to inadvertent
damage. You then have to recover either your complete system or some part of it. The action
required depends on when the damage is detected, whether the log method selected supports media
recovery, and which objects are damaged.

Media recovery

Media recovery means recreating objects from information recorded in a linear log. For example, if
an object file is inadvertently deleted, or becomes unusable for some other reason, media recovery

can be used to recreate it. The information in the log required for media recovery of an object is
called 2 media image. Media images may be recorded manually, using the rcdmgimg command, or
automatically in certain circumstances.

A media image is a sequence of log records containing an image of an object from which the object
itself can be recreated.

The first log record required to recreate an object is known as its media recovery record; it is the start of
the latest media image for the object. The media recovery record of each object is one of the pieces
of information recorded during a checkpoint.

When recreating an object from its media image, it is also necessary to replay any log records
describing updates performed on the object since the last image was taken.

Consider, for example, a local queue that has an image of the queue object taken before a persistent
message is put onto the queue. In order to recreate the latest image of the object, it is necessary to
replay the log entries recording the putting of the message to the queue, as well as replaying the
image itself.

When an object is created, the log records written contain enough information to completely
recreate the object. These records make up the object's first media image. Subsequently, media
images are recorded automatically by the queue manager in the following situations:

Images of all process objects and non-local queues are taken at each shutdown.
Local queue images are taken when the queue becomes empty.

Media images can also be recorded manually using the rcdmqimg command, described in

redmgimg (Record media image).

Recovering media images

MQSeries automatically recovers some objects from their media image if it finds that they are
corrupt or damaged. In particular, this applies to objects found to be damaged during the normal
queue manager startup. If any transaction was incomplete at the time of the last shutdown of the
queue manager, any queue affected is also recovered automatically in order to complete the startup
operation.

You must recover other objects manually, using the command rcrmqobj. This command replays the
records in the log to recreate the MQSeries object. The object is recreated from its latest image
found in the log, together with all applicable log events between the time the image was saved and
the time the recreate command is issued. Should an MQSeries object become damaged, the only
valid actions that may be performed are either to delete it or to recreate it by this method. Note,
however, that nonpersistent messages cannot be recovered in this way.

See rermqobj (Recreate object) for further details of the rcrmgobj command.

It is important to remember that you must have the log file containing the media recovery record,
and all subsequent log files, available in the log file directory when attempting media recovery of an
object. If a required file cannot be found, operator message AMQG767 is issued and the media
recovery operation fails. If you do not take regular media images of the objects that you may wish to

recreate, you can get into the situation where you have insufficient disk space to hold all the log files
required to recreate an object.

Recovering damaged objects during startup

If the queue manager discovers a damaged object during startup, the action it takes depends on the
type of object and whether the queue manager is configured to support media recovery.

If the queue manager object is damaged, the queue manager cannot start unless it can recover the
object. If the queue manager is configured with a linear log, and thus supports media recovery,
MQSeries automatically tries to recreate the MQQSeries object from its media images. If the log
method selected does not support media recovery, you can either restore a backup of the queue
manager or delete the queue manager.

If any transactions were active when the queue manager stopped, the local queues containing the
persistent, uncommitted messages put or got inside these transactions are also needed to start the
queue manager successfully. If any of these local queues are found to be damaged, and the queue
manager supports media recovery, it automatically attempts to recreate them from their media
images. If any of the queues cannot be recovered, MQSeries cannot start.

If any damaged local queues containing uncommitted messages are discovered during startup
processing on a queue manager that does not support media recovery, the queues are marked as
damaged objects and the uncommitted messages on them are ignored. This is because it is not
possible to perform media recovery of damaged objects on such a queue manager and the only
action left is to delete them. Message AMQ7472 is issued to report any damage.

Recovering damaged objects at other times

Media recovery of objects is only automatic during startup. At other times, when object damage is
detected, operator message AMQ7472 is issued and most operations using the object fail. If the
queue manager object is damaged at any time after the queue manager has started, the queue
manager perform a preemptive shutdown. When an object has been damaged you may delete it or, if
the queue manager is using a linear log, attempt to recover it from its media image using the
rcrmqobj command (see rermqobj (Recreate object) for further details).

Backup and restore

Periodically, you may wish to take a backup of your queue manager data to provide protection
against possible corruption due to hardware failures. However, because message data is often short-
lived, you may choose not to take backups.

Backing up MQSeries

To take a backup of a queue manager's data, you must first ensure that the queue manager is not
running. If your queue manager is running, stop it with the endmgm command. If you try to take a
backup of a running queue manager, the backup may not be consistent due to updates in progress
when the files were copied.

Next, locate the directories under which the queue manager places its data and its log files. You can
use the information in the configuration files to determine these directories. For more information
about this, refer to Chapter 13. "Understanding configuration files".

You may have some difficulty in understanding the names that appear in the directory. This is
because the names are transformed to ensure that they are compatible with the platform you are
n

using MQSeries on. For more information about name transformations, refer to "Understanding
MQSeries file names".

Take copies of all the queue manager's data and log file directories, including all subdirectories. Make
sure that you do not miss any of the files, especially the log control file and the configuration files.
Some of the directories may be empty, but they will all be required if you restore the backup at a
later date, so it is advisable to save them too.

You must also ensure that you preserve the ownerships of the files. You can do this with the tar
command.

Restoring MQSeries

If you have to restore a backup of a queue manager, first make sure that the queue manager is not
running.

Next, locate the directories under which the queue manager places its data and its log files. This
information is held in the configuration file.

Clear out the directories into which you are going to place the backed up data. Finally, copy the
backed up queue manager data and log files into the correct places. Check the resulting directory
structure to ensure that you have all of the required directories.

Refer to Appendix C. "Directory structure" for more information about MQSeries directories and
subdirectories.

Make sure that you have a log control file as well as the log files. Also check that the MQSeries and
queue manager configuration files are consistent so that MQSeries can look in the correct places for
the restored data.

If the data was backed up and restored correctly, the queue manager will now start.

Note: Even though the queue manager data and log files are held in different directories, you
should back up and restore the directories at the same time. If the queue manager data
and log files have different ages, the queue manager is not in a valid state and will
probably not start. If it does start, your data will almost certainly be corrupt.

Recovery scenarios

In this section we show a number of possible problems and indicate how to recover from them.

Disk drive failures

You may suffer some problem with a disk drive containing either the queue manager data, the log,
ot both. Problems can include data loss or corruption. The three cases differ only in the part of the
data that survives, if any.

In all cases you must first check the directory structure for any damage and, if necessary, repair such
damage. If you lose queue manager data, there is a danger that the queue manager directory structure
has been damaged. If so, you must recreate the directory tree manually before you try to restart the
queue manager. Having checked for structural damage, there are a number of alternative things you
can do, depending on the type of logging that you use.

Where there is major damage to the directory structure or any damage to the log,
remove all the old files back to the QMgrName level, including the configuration files, the log,
and the queue manager directory, restore the last backup and try to restart the queue
manager.

For linear logging with media recovery, ensure the directory structure is intact and try to
restart the queue manager. If it won't restart, restore a backup. If it restarts, check whether
any other objects have been damaged using MQSC. Recover the ones you find, using the
rcrmgobj command, for example:

rcrmgobj -m QMgrName -t * *

Where QMgrName is the queue manager being recovered. -t * * indicates that any object of
any type will be recovered. If only one or two objects have been reported as damaged, you
may want to specify those objects by name and type here.

Note: These commands do not apply to channels.

For linear logging with media recovery and with an undamaged log, you may be able
to restore a backup of the queue manager data leaving the existing log files and log control
file unchanged. Starting the queue manager applies the changes from the log to bring the
queue manager back to its state when the failure occurred.

This method relies on two facts. Firstly, it is vital that the checkpoint file be restored as part
of the queue manager data. This file contains the information determining how much of the
data in the log must be applied to give a consistent queue manager.

Secondly, you must have the oldest log file which was required to start the queue manager at
the time of the backup, and all subsequent log files, available in the log file directory.

If this is not possible, you must restore a backup of both the queue manager data and the
log, both of which were taken at the same time.

For circular logging, or linear logging without media recovery, you must restore the
queue manager from the latest backup that you have. Once you have restored the backup,
restart the queue manager and check as above for damaged objects. However, because you
do not have media recovery, you must find other ways of recreating the damaged objects.

Damaged queue manager object

If the queue manager object has been reported as damaged during normal operation, the queue
manager performs a pre-emptive shutdown. There are two ways of recovering in these
circumstances depending on the type of logging you use:

1. For linear logging only, manually delete the file containing the damaged object and restart
the queue manager. Media recovery of the damaged object is automatic.

2. For circular or linear logging, restore the last backup of the queue manager data and log
and restart the queue manager.

Damaged single object

If a single object is reported as damaged during normal operation, there are two ways of recovering,
depending on the type of logging you use.

1. For linear logging, recreate the object from its media image.

2. For circular logging, restore the last backup of the queue manager data and log and restart
the queue manager.

Automatic media recovery failure

If a local queue required for queue manager startup with a linear log is damaged, and the automatic
media recovery fails, restore the last backup of the queue manager data and log and restart the queue
manager.

Chapter 13. Understanding configuration
files

MQSerties for IRIX uses configuration files to hold basic product configuration information. This
chapter describes what they are and how you can use them to change the way that queue managers
operate.

What configuration files are

Configuration files define optional values for individual queue managers and for MQSeries on the
node as a whole. These files have file name extensions of ini and are also referred to as ini files or
stanza files.

A configuration file contains one or more $tanzas, where a stanza is simply a group of lines in the file
that together have a common function or define part of a system. For example, there are stanzas
associated with logs, with channels, and installable services.

Configuration files may be modified automatically by commands that change the configuration of
queue managers on the node and also by editing them manually.

There are two types of configuration file:

The MQSeries configuration file, which specifies values for the MQSeries on the node as a
whole. There is one MQSeries configuration file per node.

Queue manager configuration files, which specify values for specific queue managers. There is one
queue manager configuration file for each queue manager on the node.

MQSeries configuration file

The MQSeries configuration file mgs. ini contains information relevant to all the queue managers
on a node. It is created automatically during installation. In particular, the MQSeries configuration
file is used to locate the data associated with each queue manager. The MQSeries configuration file
is located in the mgm directory, by default /var/mgm.

What the MQSeries configuration file contains

The mgs. ini file contains the names of the queue managers, the name of the default queue
manager, and the location of the files associated with each of them. The following stanzas can
appear in mgs. ini:

AllQueueManagers

Specifies the path to the gmgrs directory where the files associated with a queue manager are
stored. If during installation, you specify a location for MQSeries files that is not the default, the
DefaultPrefix is automatically changed to reflect this.

DefaultQueueManager

Specifies the default queue manager for the node. This queue manager processes any commands
where a queue manager name is not explicitly specified. The stanza is automatically updated if
you create a new default queue manager. If you inadvertently create a default queue manager and
then wish to revert to the original, you must alter this stanza manually.

QueueManager

There is one such stanza for each queue manager. This specifies the queue manager name and
the location of the files associated with that queue manager. The names of these files are based
on the queue manager name but these are transformed if the queue manager name is not a valid

filename. See "Understanding MQSeries file names".
LogDefaults

Specifies the default log parameters for the node. The DefaultPrefix and DefaultPath
entries allow for the queue manager and its log to be on different physical drives. This is
recommended, although by default, they are on the same drive. See "Configuring the logs" for
more information about the log file stanzas.

Figure 25 shows an example of an MQSeries configuration file.

Figure 25. Example MQSeries configuration file

i #
#* Module Name: mgs.ini *H
H* Type : MQSeries Configuration File *H
#* Function : Define MQSeries resources for the node *H#
> *#
#***#
H* Notes : *#
#* 1) This is an example MQSeries configuration file *H
> *#
i #
Al IQueueManagers:

i #
#* The path to the gmgrs directory, below which queue manager data >4
#* is stored *#

#***#

Defaul tPrefix=/var/mgm

|LogDefaults:

LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=/var/mgm/log

QueueManager:
Name=saturn.queue.manager
Prefix=/var/mgm
Directory=saturn!queue!manager

QueueManager:
Name=pluto.queue.manager
Prefix=/var/mgm
Directory=pluto!queue!manager

DefaultQueueManager:
Name=saturn.queue.manager

In this example, MQSeries on the node is using the default locations for queue managers and for the
logs.

The queue manager saturn.queue.manager is the default queue manager for the node. The
directory for files associated with this queue manager has been automatically transformed into a
valid file name for the file system.

CAUTION Because the MQSeties configuration file is used to locate the data associated with
queue managers, a non-existent or incorrect configuration file can cause some or all MQSeries
commands to fail. Also, applications cannot connect to a queue manager that is not defined in the
MQSeries configuration file.

Queue manager configuration file

A queue manager configuration file gm. ini contains information relevant to a specific queue
manager. There is one queue manager configuration file for each queue manager. It is created
automatically when the queue manager with which it is associated is created.

The file is called gm. ini and is held in the root of the directory tree occupied by the queue manager.
For example, the path and name for a configuration file for a queue manager called QMNAME is:

/var/mgm/gmgrs/QMNAME/Zgm. ini

Note: The queue manager name can be up to 48 characters in length. However, this does not
guarantee that the name is valid or unique, therefore, a directory name is generated based
on the queue manager name. This process is known as name transformation, for a

description, see "Understanding MQSeries file names".
What the queue manager configuration file contains

The stanzas that may appear in a queue manager configuration file, gm. ini are as follows:
Service

Specifies the name of one of the installable services, and the number of entry points to that

service. There is one stanza for each service. These services are available:
Authorization service
Name setrvice

The authorization service stanza and its associated ServiceComponent stanza are added
automatically when the queue manager is created.

Once the Object Authority Manager (OAM) has been enabled, you can only disable it by:
1. Deleting the queue manager (using the dlitmgm command)

2. Creating the queue manager again (using the Crtmgm command) with the MQSNOAUT
variable.

The name service stanza must be added manually, if you wish to enable the supplied name service.
ServiceComponent

These stanzas define the service component associated with a particular service. There can be
more than one service component stanza for each service, but each service component stanza
must match the corresponding setvice stanza. See MQSeries Programmable System Management for
more information. By default, the authorization service stanza is present and the associated
component, the OAM is active.

Log

Specifies the default log parameters for this queue manager. The fields in this stanza are same as
those in the LogDefaults stanza in the mqs.ini file. The values can be made different, if required.
See "Configuring the logs" for more information about the log file stanzas.

Channels

This stanza contains information about the channels. As well as defining the maximum number
of channels that can be defined for the queue manager, a second parameter limits the number of
channels that can be active at any time.

The MaxChannels number is the maximum number of channels that can have current status.
This includes channels which are retrying or stopped.

The MaxActiveChannels parameter limits the number of channels that can have current status
at the same time.

See the MQSeries Distributed Queuing Guide for more information about channels.

TCP

Specifies network protocol configuration parameters. These stanzas override the default
parameters for channels. Only stanzas representing changed default values are actually present.

KeepAlive, if specified, causes TCP/IP to periodically check that the other end of the

connection is still available. If it is not, the channel is closed.

You can set the TCP/IP keepalive parameters by using the idtune and idbuild commands to
modify the TCP_KEEPCNT and TCP_KEEPINT values for the kernel configuration. The
default configuration is to retry 7 times at 7200 second (2 houtly) intervals.

See the MQSeries Distributed Queuing Guide for more information.
Figure 26 shows how the stanzas might be arranged in a queue manager configuration file.

Figure 26. Example gueue manager configuration file

#***#

#* Module Name: gm.ini *H
H* Type : MQSeries queue manager configuration Ffile *H
Function : Define the configuration of a single queue manager *#
> *#
#***#
H#* Notes : *#
#* 1) This file defines the configuration of the queue manager *H
> *#

#***#

Service:
Name=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service
Module=mgmtop/bin/amgzfu.o
ComponentDataSize=0

Service:
Name=NameService
EntryPoints=9

ServiceComponent:
Service=NameService
Name=MQSeries.UNIX_.name.service
Module=/u/opman/abctest.o
ComponentDataSize=128

|Log:

LogPrimaryFiles=3

LogSecondaryFiles=2

LogFilePages=1024

LogType=CIRCULAR

LogBufferPages=17
LogPath=/var/mgm/log/saturn!queue!manager/

CHANNELS:
MaxChannels = 20 Maximum number of Channels allowed,

the default number is 100

Maximum number of Channels allowed to be

active at any time. The default is the

MaxActiveChannels = 10

; value of MaxChannels.

TCP: ; TCP/IP entries
Port = 1800 ; use port 1800 instead of the default 1414
KeepAlive = Yes ; Switch KeepAlive on

Editing configuration files

You can edit the default configuration files to alter the system defaults. However, before editing any
configuration file, make sure that you have a backup that you can revert to.

In some circumstances, you may have to edit your configuration files. For example:
If you lose a configuration file; recover from backup if possible.
If you need to move one or more queue managers to a new directory.

If you need to change your default queue manager; this could happen if you accidentally
delete the existing queue manager.

When advised to do so by your Willow Technology Support Center.
Changing the default prefix

If you change the default prefix, DefaultPrefix, for the message queue manager, you must
replicate the directory structure that was created at installation time (see Figure 34). In particular, the
gmgrs structure must be created. You must stop MQSeries before changing the default prefix. Only
restart MQSeries after the structures have been moved to the new location and the default prefix has
been changed.

Implementing changes to configuration files

If you edit a configuration file the changes will not be implemented immediately by the queue
manager. Changes made to the MQSeries configuration file will only be implemented when
MQSeries is started. Changes made to a queue manager configuration file will be implemented when
the queue manager is started. If the queue manager is running when you make the changes, you
must stop and then restart the queue manager for any changes to be recognized by the system.

Recommendations for configuration files
When you create a new queue manager, you should:
Back up the MQSeries configuration file

Back up the new queue manager configuration file

Configuring the logs

The log parameters in the MQSeries configuration file are used as default values when you create a
queue manager. These defaults can be overridden if you specify the log parameters on the crtmgm

command. See crtmgm (Create queue manager) for details of this command.

The values specified in the queue manager configuration file are read when the queue manager is
started. The file is created when the queue manager is created.

The values in a configuration file are set according to these priorities:

1. Parameters entered on the command line override both the queue manager configuration file
and the MQSeries configuration file.

2. The queue manager configuration file overrides the MQSeries configuration file.
3. The MQSeries configuration file contains the supplied default values.

Note: User ID mgm and group mgm must have full authorities to the log files. If you change the
locations of these files, you must give these authorities yourself. This is not required if
the logs files are in the default locations supplied with the product.

If you use a value that is not valid in a configuration file, it is ignored. The effect is the same as
missing out the value entirely. An operator message is issued to indicate the problem.

You can edit the MQSeries configuration file after installation and change the default values to your
own requirements.

Log configuration stanzas

The size and location of the log is configured by stanzas in the MQSeries and queue manager
configuration files. These stanzas specify the type of logging to be used, the log file size, and the log
path.

The MQSeties configuration file contains a stanza called LogDefaults with the following format:

LogDefaults:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogDefaultPath=/var/mgm/log

The values specified in the MQSeries configuration file are read whenever a queue manager is
created, started, or deleted.

Each queue manager configuration file has a stanza called L0g, which has the following format:

Log:
LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024
LogType=CIRCULAR
LogBufferPages=17
LogPath=/var/mgm/log/<QM_Dir_Name>/

<QM_Dir_Name> is the sub-directory name for this queue manager, providing a unique path to
the logs. This is the queue manager name if it is a valid for the file system; otherwise, it is a

transformed name. See "Understanding MQ)Series file names".
LogPrimaryFiles
Primary log files are the log files allocated during creation for future use.
The default number is 3.

The default can be overridden by editing the LogPrimaryFiles value in the product and queue
manager configuration files.

The value is examined when the queue manager is created or started. You can increase or
decrease it after the queue manager has been created. However, a change in the value is not
effective until the queue manager is restarted and the effect may not be immediate.

The minimum number of primary log files is 2 and the maximum is 62. The total number of
primary and secondary log files must not exceed 63, and must not be less than 3.

LogSecondaryFiles
Secondary log files are the log files allocated when the primary files are exhausted.
The default number is 2.

The default can be overridden using the LogSecondaryFiles value in the product and queue
manager configuration files.

The value is examined when the queue manager is created or started. You can change this value,
but changes are not effective until the queue manager is restarted and the effect may not be
immediate.

The minimum number of secondary log files is 1 and the maximum is 61. The total number of
primary and secondary log files must not exceed 63, and must not be less than 3.

LogFilePages
The log data is held in a series of files called log files.

The default number of log file pages is 1024, equating to a log file size of 4 MB. The minimum
number of log file pages 64 and the maximum is 16 384.

The log file size is specified in units of 4 KB pages. It can be specified only during queue
manager creation and the value used is obtained by taking the default (1024) and overriding it
with the value in the LogFilePages attribute in the MQSeries configuration file, or by overriding
with the value specified on the Crtmgm command using the - 1F flag.

Note: The size of the log files is specified during queue manager creation and cannot be
changed for an existing queue manager.

LogType
The LogType parameter is used to define the type to be used, either CIRCULAR or LINEAR.
The default is CIRCULAR.

If you wish to change the default, you may either edit the MQSeries configuration file or specify
linear logging with the Crtmgm command. You cannot change the logging method after a queue
manager has been created.

LogBufferPages

The amount of memory allocated to buffer records for writing is configurable. The size of the
buffers is specified in units of 4 KB pages.

The default number of buffer pages is 17, equating to 68 KB.

The default can be overridden using the LogBufferPages value in the MQSeries and queue manager
configuration files.

The value is examined when the queue manager is created or started and may be increased or
decreased at either of these times. However, a change in the value is not effective until the queue
manager is restarted.

The minimum number of buffer pages is 4 and the maximum is 32. Larger buffers lead to higher
throughput, especially for larger messages.

LogPath

You can specify the directory in which the log files for a queue manager reside. The directory
should exist on a local device to which the queue manager can write and, preferably, should be
on a different drive from the message queues. Specifying a different drive gives added protection
in case of system failure.

The default is /var/mgm/log.

You can specify the name of a directory in the Crtmgm command using the -1d flag. When a
queue manager is created, a directory is also created under the queue manager directory, and this
is used to hold the log files. The name of this directory is based on the queue manager name.
This ensures that the Log File Path is unique, and also that it conforms to any limitations on
directory name lengths.

If you do not specify -1d on the Crtmgm command, the value of the LogDefaultPath
attribute in the MQSeries configuration file is used. If this attribute is missing, the default of

/var/mgm/log is used. The queue manager name is appended to the directory name to ensure
that multiple queue managers use different log directories.

When the queue manager has been created, a LogPath value is created in the log stanza in the
queue manager configuration file giving the complete directory name for the queue managet's
log. This value is used to locate the log when the queue manager is started or deleted.

Specifying log file sizes

The size of the log file that you require depends on the number and size of messages that are to be
handled by your system. Each operation adds an overhead to the size of the log. For example, when
a persistent message is put to a queue, the message data must be written to the log to make recovery
of the message possible. The message descriptor is also logged together with some internal
information that describes the effect of putting the message on the queue.

There is a trade-off between the size of your log files and the number of files that you have. Larger
files are more difficult to handle but are more efficient.

Figure 27 shows approximate values for the header information required for various types of
operation.

Figure 27. Log overhead sizes

(All values are approximate.)

Operation Size

Put persistent message 600 bytes + message length

[f the message is large, it is divided into segments of 15700 bytes,
each with a 300-byte overhead.

Get message 260 bytes

Syncpoint, commit 750 bytes

Syncpoint, roll-back 1000 bytes + 12 bytes for each get or put to be rolled back
Create object 1500 bytes

Delete object 300 bytes

Alter attributes 1024 bytes

Record media image 800 bytes + image

The image is divided into segments of 15700 bytes, each having a
300-byte overhead.

Checkpoint

750 bytes + 200 bytes for each active unit of work.

IAdditional data may be logged for any uncommitted puts or gets
that have been buffered for performance reasons.

Chapter 14. Problem Determination

This chapter suggests reasons for any transient problems you may have using MQSeries for IRIX.
The process of problem determination is that you start with the symptoms and trace them back to
their cause. Not all problems can be solved immediately, for example, performance problems caused
by the limitations of your hardware. Also, if you think that the cause of the problem is in the
MQSeries code, contact your Willow Technology Support Center. This chapter contains these
sections:

'

'Preliminary checks"

n

Common programming errors"
"Understanding MQSeries file names"

"What to do next"

"Application design considerations”

"Incorrect output”

'

'Error logs"

"Dead-letter queues"

"Configuration files and problem determination”

'

'Using trace"

"First failure support technology"

"Problem determination with clients"

Preliminary checks

The cause of your problem could be in:
MQSeries
The network
The application

The sections that follow raise some fundamental questions that you need to consider. Work through
the questions, making a note of anything that might be relevant to the problem.

Has MQSeries for IRIX run successfully before?

If MQSeries has not run successfully before, it is likely that you have not yet set it up correctly. See

Chapter 2. "Installing MQSeries for IRIX" to check that you have carried out all the steps correctly.
Are there any error messages?

MQSeries uses error logs to capture messages concerning the operation of MQSeries itself, any
queue managers that you start, and error data coming from the channels that are in use. Check the
error logs to see if any messages have been recorded that are associated with your problem.

See "Error logs" for information about the contents of the error logs and their locations.
Are there any return codes explaining the problem?

If your application gets a return code indicating that a Message Queue Interface (MQI) call has
failed, refer to the MQSeries Application Programming Reference manual for a description of that return
code.

Can you reproduce the problem?
If you reproduce the problem, consider the conditions under which it can be reproduced:
Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command works if it is
entered on the command line, but not otherwise, check that the command server has not
stopped, and that the queue definition of the SYSTEM.ADMIN.COMMAND . QUEUE has not been
changed.

Is it caused by a program? Does it fail on all MQSeries systems and all queue managers, or
only on some?

Can you identify any application that always seems to be running in the system when the
problem occurs? If so, examine the application to see if it is in error.

Have any changes been made since the last successful run?

When you are considering changes that might recently have been made, think about the MQSeries
system, and also about the other programs it interfaces with, the hardware, and any new
applications. Consider also the possibility that a new application that you are not aware of might
have been run on the system.

Have you changed, added, or deleted any queue definitions?

Have you changed or added any channel definitions? Changes may have been made to either
MQSeries channel definitions or any underlying communications definitions required by
your application.

Do your applications deal with return codes that they might get as a result of any changes
you have made?

Has the application run successfully before?

If the problem appears to involve one particular application, consider whether the application has
run successfully before.

Before you answer YES to this question, consider the following:
Have any changes been made to the application since it last ran successfully?

If so, it is likely that the error lies somewhere in the new or modified part of the application.
Take a look at the changes and see if you can find an obvious reason for the problem. Is it
possible to retry using a backlevel of the application?

Have all the functions of the application been fully exercised before?

Could it be that the problem occurred when part of the application that had never been
invoked before was used for the first time? If so, it is likely that the error lies in that part of
the application. Try to find out what the application was doing when it failed, and check the
source code in that part of the program for errors.

If a program has been run successfully on many previous occasions, check the current queue
status, and the files that were being processed when the error occurred. It is possible that
they contain some unusual data value that causes a rarely used path in the program to be
invoked.

Does the application check all return codes?

Has your MQSeries system been changed, perhaps in a minor way, but your application does
not check the return codes it receives as a result of the change. For example; does your
application assume that the queues it accesses are shareable? If a queue has been redefined as
exclusive, can your application deal with return codes indicating that it can no longer access
that queue?

Does the application run on other MQSeries systems?

Could it be that there is something different about the way that this MQSeries system is set
up which is causing the problem? For example, have the queues been defined with the same
message length or priority?

If the application has not run successfully before

If your application has not yet run successfully, you need to examine it carefully to see if you can
find any errors.

Before you look at the code, and depending upon which programming language the code is written
in, examine the output from the translator, or the compiler and linkage editor, if applicable, to see if
any errors have been reported.

If your application fails to translate, compile, or link-edit into the load library, it will also fail to run if
you attempt to invoke it. See the MQSeries Application Programming Reference manual for information
about building your application.

If the documentation shows that each of these steps was accomplished without error, you should
consider the coding logic of the application. Do the symptoms of the problem indicate the function

that is failing and, therefore, the piece of code in error? See "Common programming errors" for
some examples of common errors that cause problems with MQSeries applications.

Does the problem affect specific parts of the network?

You might be able to identify specific parts of the network that are affected by the problem (remote
queues, for example). If the link to a remote message queue manager is not working, the messages
cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the intercommunication
component of MQSeries has been started.

Check that messages are reaching the transmission queue, and check the local queue definition of
the transmission queue and any remote queues.

Have you made any network-related changes that might account for the problem or changed any
MQSeries definitions?

Does the problem occur at specific times of the day?

If the problem occurs at specific times of day, it could be that it is dependent on system loading.
Typically, peak system loading is at midmorning and midafternoon, so these are the times when
load-dependent problems are most likely to occur. (If your MQSeries network extends across more
than one time zone, peak system loading might seem to occur at some other time of day.)

Is the problem intermittent?

An intermittent problem could be caused by failing to take into account the fact that processes can
run independently of each other. For example, a program may issue an MQGET call, without
specifying a wait option, before an earlier process has completed. An intermittent problem may also
be seen if your application tries to get a message from a queue while the call that put the message is
in-doubt (that is, before it has been committed or backed out).

Have you applied any service updates?

If a service update has been applied to MQQSeries, check that the update action completed
successfully and that no error message was produced.

Did the update have any special instructions?
Was any test run to verify that the update had been applied correctly and completely?
Does the problem still exist if MQSeries is restored to the previous service level?

If the installation was successful, check with the Willow Technology Support Center for any
patch error.

If a patch has been applied to any other program, consider the effect it might have on the
way MQSeries interfaces with it.

Common programming errors

The examples that follow illustrate the most common causes of problems encountered while
running MQSeries programs. You should consider the possibility that the problem with your
MQSeries system could be caused by one or more of these errors:

Assuming that queues can be shared, when they are in fact exclusive.
Passing incorrect parameters in an MQI call.

Passing insufficient parameters in an MQI call. This may mean that MQI cannot set up
completion and reason codes for your application to process.

Failing to check return codes from MQI requests.
Passing variables with incorrect lengths specified.
Passing parameters in the wrong order.

Failing to initialize Msgld and Correlld correctly.
Problems with commands

You should be careful when including special characters in descriptive text for some commands. For
example, back slash, \, and double quote, ", characters. If you use either of these in descriptive text,
precede them with a \, that is, enter \\ or \" if you want \ or " in your text.

Understanding MQSeries file names

The path to a queue manager directory is formed from the following:

A prefix - the first part of the name:

/var/mgm

This prefix is defined in the queue manager configuration file.

A literal:

gmgrs

A coded queue manager name, which is the queue manager name transformed into a valid

directory name. For example, the queue manager:

gueue .manager

would be represented as:

queue!manager

This process is referred to as name transformation.
Queue manager name transformation

In MQSeries you can give a queue manager a hame containing up to 48 characters. For example, you
could name a queue manager:

QUEUE . MANAGER . ACCOUNT ING . SERVICES

However, each queue manager is represented by a file and there are limitations to the maximum
length a file name can be, and to the characters that can be used in the name. As a result, the names
of files representing objects are automatically transformed to meet the requirements of the file
system.

The rules governing the transformation of a queue manager name, using the example of a queue
manager with the name queue.manager, are as follows:

1. Transform individual characters:
. becomes !
/ becomes &
2. 1If the name is still not valid:
1. Truncate it to eight characters
2. Append a three character numeric suffix
For example, assuming the default prefix, the queue manager name becomes:

/var/mgm/gmgrs/queue Imanager

The transformation algorithm also allows distinction between names that differ only in case, on file
systems that are not case sensitive.

Object name transformation

Object names are not necessarily valid file system names. Therefore the object names may need to
be transformed. The method used is different from that for queue manager names because, although
there are only a few queue manager names on each machine, there can be a large number of other
objects for each queue manager. Only process definitions and queues are represented in the file
system; channels are not affected by these considerations.

When a new name is generated by the transformation process there is no simple relationship with
the original object name. You can use the dspmqfls command to convert between real and
transformed object names.

What to do next

Perhaps the preliminary checks have enabled you to find the cause of the problem. If so, you should

now be able to resolve it, possibly with the help of other books in the MQSeries library (see
"MQSeries publications") and in the libraries of other licensed programs.

If you have not yet found the cause, you must start to look at the problem in greater detail.

The purpose of this section is to help you identify the cause of your problem if the preliminary
checks have not enabled you to find it.

When you have established that no changes have been made to your system, and that there are no
problems with your application programs, choose the option that best describes the symptoms of
your problem.

"Have you obtained some incorrect output?”

'

'Have you failed to receive a response from a PCEF command?"

"Does the problem affect only remote queues?"

'

'Is your application or operating system running slowly?"

If none of these symptoms describe your problem, consider whether it might have been caused by
another component of your system.

Have you obtained some incorrect output?
In this book, "incorrect output" refers to your application:
Not receiving a message that it was expecting.
Receiving a message containing unexpected or corrupted information.

Receiving a message that it was not expecting, for example, one that was destined for a
different application.

In all cases, check that any queue or queue manager aliases that your applications are using are
correctly specified and accommodate any changes that have been made to your network.

If an MQSeries error message is generated, all of which are prefixed with the letters AMQ, you should
look in the error log. See "Error logs" for further information.

Have you failed to receive a response from a PCF command?

If you have issued a command but you have not received a response, consider the following
questions:

Is the command server running?
Work with the dSpmQcsv command to check the status of the command server.

- If the response to this command indicates that the command server is not running, use
the StrmQcsv command to start it.

- If the response to the command indicates that the SYSTEM.ADMIN.COMMAND . QUEUE is

not enabled for MQGET requests, enable the queue for MQGET requests.
Has a reply been sent to the dead-letter queue?

The dead-letter queue header structure contains a reason or feedback code describing the
problem. See the MQSeries Application Programming Reference manual for information about the
dead-letter queue header structure (MQDLH).

If the dead-letter queue contains messages, you can use the browse sample application
(AMQSBCG) provided to browse the messages using the MQGET call. The sample
application steps through all the messages on a named queue for a named queue manager,
displaying both the message descriptor and the message context fields for all the messages
on the named queue.

Has a message been sent to the error log? See "Error logs" for further information.
Are the queues enabled for put and get operations?

Is the WaitInterval set to a sufficient length?

If your MQGET call has timed out, a completion code of MQCC_FAILED and a reason
code of MQRC_NO_MSG_AVAILABLE are returned. (See the MQSeries Application
Programming Reference manual for information about the WaitiInterval field, and completion
and reason codes from MQGET.)

If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND . QUEUE, do you need to take a syncpoint?

Unless you have specifically excluded your request message from syncpoint, you need to take
a syncpoint before attempting to receive reply messages.

Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently high?
Are you using the Correl ld and Msgld fields correctly?

Set the values of Msgld and Correl Id in your application to ensure that you receive all
messages from the queue.

Try stopping the command server and then restarting it, responding to any error messages that are

produced.

If the system still does not respond, the problem could be with either a queue manager or the whole
of the MQSeries system. First try stopping individual queue managers to try and isolate a failing
queue manager. If this does not show the problem, try stopping and restarting MQSeries,
responding to any messages that are produced in the error log.

If the problem still occurs after restart, contact your Willow Technology Support Center for help.

If you suspect that the problem occurs with only a subset of queues, check the local queues that you
think are having problems:

1. Display the information about each queue. You can use the MQS command DISPLAY

QUEUE to display the information.
2. Use the data displayed to do the following checks:

If CURDEPTH is at MAXDEPTH, this indicates that the queue is not being
processed. Check that all applications are running normally.

If CURDEPTH is not at MAXDEPTH, check the following queue attributes to
ensure that they are correct:

- If triggering is being used:
Is the trigger monitor running?

Is the trigger depth too great? That is, not causing a trigger event to be
generated often enough?

Is the process name correct?
Is the process available and operational?

- Can the queue be shared? If not, another application could already have it open
for input.

- Is the queue enabled appropriately for GET and PUT?

If there are no application processes getting messages from the queue, determine
why this is so. It could be because the applications need to be started, a connection
has been distupted, or the MQOPEN call has failed for some reason.

Check the queue attributes IPPROCS and OPPROCS. These attributes indicate whether
the queue has been opened for input and output. If a value is zero, it indicates that
no operations of that type can occur. Note that the values may have changed and
that the queue was open but is now closed.

You need to check the status at the time you expect to put or get a message.

If you are unable to solve the problem, contact your Willow Technology Support Center for help.
Does the problem affect only remote queues?

If the problem affects only remote queues, check the following:

Check that required channels have been started, can be triggered, and that any required
initiators are running.

Check that the programs that should be putting messages to the remote queues have not
reported problems.

If you use triggering to start the distributed queuing process, check that the transmission
queue has triggering set on. Also, check that the trigger monitor is running.

Check the error logs for messages indicating channel errors or problems.

If necessary, start the channel manually. See the MQSeries Distributed Queuing Guide for
information about how to do this.

See the MQSeries Distributed Queuing Guide for information about how to define channels.
Is your application or operating system running slowly?

If your application is running slowly, this could indicate that it is in a loop, or waiting for a resource
that is not available.

This could also be caused by a performance problem. Perhaps it is because your system is operating
near the limits of its capacity. This type of problem is probably worst at peak system load times,
typically at midmorning and midafternoon. (If your network extends across more than one time
zone, peak system load might seem to you to occur at some other time.)

A performance problem may be caused by a limitation of your hardware.

If you find that performance degradation is not dependent on system loading, but happens
sometimes when the system is lightly loaded, a poorly designed application program is probably to
blame. This could manifest itself as a problem that only occurs when certain queues are accessed.

The following symptoms might indicate that MQSeries is running slowly:
Your system is slow to respond to MQSeries commands.

Repeated displays of the queue depth indicate that the queue is being processed slowly for an
application with which you would expect a large amount of queue activity.

If the performance of your system is still degraded after reviewing the above possible causes, the
problem may lie with MQSeries for IRIX itself. If you suspect this, you need to contact your Willow
Technology Support Center for assistance.

Application design considerations

There are a number of ways in which poor program design can affect performance. These can be
difficult to detect because the program can appear to perform well, while impacting the performance
of other tasks. Several problems specific to programs making MQSeries calls are discussed in the
following sections.

For more information about application design, see the MQSeries Application Programming Guide.

Effect of message length

Although MQSeries allows messages to hold up to 4MB of data, the amount of data in a message
affects the performance of the application that processes the message. To achieve the best
performance from your application, you should send only the essential data in a message; for
example, in a request to debit a bank account, the only information that may need to be passed from
the client to the server application is the account number and the amount of the debit.

Effect of message persistence

Persistent messages are logged. Logging messages reduces the performance of your application, so
you should use persistent messages for essential data only. If the data in a message can be discarded
if the queue manager stops or fails, use a nonpersistent message.

Searching for a particular message

The MQGET call usually retrieves the first message from a queue. If you use the message and
correlation identifiers (Msgld and Correlld) in the message descriptor to specify a particular
message, the queue manager has to search the queue until it finds that message. Using the MQGET
call in this way affects the performance of your application.

Queues that contain messages of different lengths

If the messages on a queue are of different lengths, to determine the size of a message, your
application could use the MQGET call with the BufferLength field set to zero so that, even
though the call fails, it returns the size of the message data. The application could then repeat the
call, specifying the identifier of the message it measured in its first call and a buffer of the correct
size. However, if there are other applications serving the same queue, you might find that the
petformance of your application is reduced because its second MQGET call spends time seatching
for a message that another application has retrieved in the time between your two calls.

If your application cannot use messages of a fixed length, another solution to this problem is to use
the MQINQ call to find the maximum size of messages that the queue can accept, then use this
value in your MQGET call. The maximum size of messages for a queue is stored in the
MaxMsgLength attribute of the queue. This method could use large amounts of storage, however,

because the value of this queue attribute could be as high as 4MB, the maximum allowed by
MQSeries for IRIX.

Frequency of syncpoints

Programs that issue numerous MQPUT calls within syncpoint, without committing them, can cause
performance problems. Affected queues can fill up with messages that are currently inaccessible,
while other tasks might be waiting to get these messages. This has implications in terms of storage,
and in terms of threads tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more
than one message, use the MQOPEN call, followed by a series of MQPUT calls and a single
MQCLOSE call.

Incorrect output

The term "incorrect output" can be interpreted in a lot of different ways. The meaning for the
purpose of problem determination within this book is explained in "Have you obtained some
incorrect output?".

Two types of incorrect output are discussed in this section:
Messages that do not appear when you are expecting them
Messages that contain the wrong information, or information that has been corrupted

Additional problems that you might find if your application includes the use of distributed queues
are also discussed.

Messages do not appear on the queue
If messages do not appear when you are expecting them, check for the following:
Has the message been put on the queue successfully?
- Has the queue been defined correctly, for example is MAXMSGL sufficiently large?
- Is the queue enabled for putting?

- Is the queue already full? This could mean that an application was unable to put the
required message on the queue.

Are you able to get any messages from the queue?
- Do you need to take a syncpoint?

- If messages are being put or retrieved within syncpoint, they are not available to other
tasks until the unit of recovery has been committed.

- Is your wait interval long enough?

- You can set the wait interval as an option for the MQGET. You should ensure that you
are waiting long enough for a response.

- Are you waiting for a specific message that is identified by a message or correlation
identifier (Msgld or Correl1d)?

- Check that you are waiting for a message with the correct Msgld or Correlld. A
successful MQGET call sets both these values to that of the message retrieved, so you
may need to reset these values in order to get another message successfully.

- Also check if you can get other messages from the queue.

- Can other applications get messages from the queue?

- Was the message you are expecting defined as persistent?

- If not, and MQSeries has been restarted, the message has been lost.
- Has another application got exclusive access to the queue?

If you are unable to find anything wrong with the queue, and MQSeries is running, make the
following checks on the process that you expected to put the message on to the queue:

Did the application get started?

If it should have been triggered, check that the correct trigger options were specified.
Did the application stop?

Is a trigger monitor running?

Was the trigger process defined correctly?

Did the application complete correctly?

Look for evidence of an abnormal end in the job log.

Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another. For example,
suppose one transaction issues an MQGET call with a buffer length of zero to find out the length
of the message, and then issues a specific MQGET call specifying the Msgld of that message.
However, in the meantime, another transaction issues a successful MQGET call for that message,
so the first application receives a reason code of MQRC_NO_MSG_AVAILABLE. Applications
that are expected to run in a multi-server environment must be designed to cope with this situation.

Consider that the message could have been received, but that your application failed to process it in
some way. For example, did an error in the expected format of the message cause your program to
reject it? If this is the case, refer to "Messages contain unexpected or corrupted information".

Messages contain unexpected or corrupted information

If the information contained in the message is not what your application was expecting, or has been
corrupted in some way, consider the following points:

Has your application, or the application that put the message onto the queue, changed?

Ensure that all changes are simultaneously reflected on all systems that need to be aware of
the change.

For example, the format of the message data may have been changed, in which case, both
applications must be recompiled to pick up the changes. If one application has not been
recompiled, the data will appear corrupt to the other.

Is an application sending messages to the wrong queue?

Check that the messages your application is receiving are not really intended for an
application servicing a different queue. If necessary, change your security definitions to
prevent unauthorized applications from putting messages on to the wrong queues.

If your application has used an alias queue, check that the alias points to the correct queue.
Has the trigger information been specified correctly for this queue?

Check that your application should have been started; or should a different application have

been started?

If these checks do not enable you to solve the problem, you should check your application logic,
both for the program sending the message, and for the program receiving it.

Problems with incorrect output when using distributed queues
If your application uses distributed queues, you should also consider the following points:

Has MQSeries been correctly installed on both the sending and receiving systems, and
correctly configured for distributed queuing?

Are the links available between the two systems?

Check that both systems are available, and running to MQSeries. Check that the connection
between the two systems and the channels between the two queue managers are active.

Is triggering set on in the sending system?

Is the message you are waiting for a reply message from a remote system?
Check that triggering is activated in the remote system.

Is the queue already full?

This could mean that an application was unable to put the required message onto the queue.
If this is so, check if the message has been put onto the dead-letter queue.

The dead-letter queue header contains a reason or feedback code explaining why the
message could not be put onto the target queue. See the MQSeries Application Programming
Reference manual for information about the dead-letter queue header structure.

Is there a mismatch between the sending and receiving queue managers?

For example, the message length could be longer than the receiving queue manager can
handle.

Are the channel definitions of the sending and receiving channels compatible?

For example, a mismatch in sequence number wrap stops the distributed queuing
component. See the MQSeries Distributed Queuing Guide for more information about
distributed queuing.

Is data conversion involved? If the data formats between the sending and receiving
applications differ, data conversion is necessary. Automatic conversion occurs when the
MQGET is issued if the format is recognized as one of the built-in formats.

If the data set is not recognized for conversion, the data conversion exit is taken to allow
you to perform the translation with your own routines.

An exception to the above occuts if you are sending data to MQSeries for MVS/ESA. Here
the conversion occurs on message transmission from MQSeries for OS/2.

Refer to the MQSeries Distributed Queuing Guide for further details of data conversion.

Error logs

MQSeries for IRIX uses a number of error logs to capture messages concerning the operation of
MQSeries itself, any queue managers that you start, and error data coming from the channels that
are in use.

The location the error logs are stored in depends on whether the queue manager name is known and
whether the error is associated with a client.

1. If the queue manager name is known and the queue manager is available:

/var/mgm/gmgrs/QMgrName/errors/AMQERRO1 . LOG

2. If the queue manager is not available:

/var/mgm/gmgrs/@SYSTEM/errors/AMQERROL . LOG

3. If an error has occurred with a client application:
AMQERRO1.LOG
in the path for the environment.
4. First Failure Support Technology (FFST) - see "How to examine the FESTs".

Note: In the case of clients, the errors are stored on the client's root drive.

Log files

At installation time an @SYSTEM/ errors directory is created in the QMGRS file path. The etrors
subdirectory can contain up to three error log files named:

AMQERRO01.LOG
AMQERR02.LOG
AMQERR03.1LOG

After you have created a queue manager, three error log files are created when they are needed by
the queue manager. These files have the same names as the @SYSTEM ones, that is AMQERRO1,
AMQERRO02, and AMQERRO3, and each has a capacity of 256KB. The files are placed in the errors
subdirectory of each queue manager that you create.

As error messages are generated they are placed in AMQERRO1. When AMQERRO1 gets bigger
than 256KB it is copied to AMQERRO2. Before the copy, AMQERRO?2 is copied to
AMQERRO3.LOG. The previous contents, if any, of AMQERRO3 are discarded.

The latest error messages are thus always placed in AMQERRO1, the other files being used to

maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue manager's errors files
unless the name of their queue manager is unknown or the queue manager is unavailable. When the
queue manager name is unavailable or its name cannot be determined, channel-related messages are
placed in the qmgt/@SYSTEM/errors subdirectory.

To examine the contents of any error log file, use your usual editor.

Early errors

There are a number of special cases where the above error logs have not yet been established and an
error occurs. MQSeries attempts to record any such errors in an error log. The location of the log
depends on how much of a queue manager has been established.

If, due to a corrupt configuration file for example, no location information can be determined,
errors are logged to an errors directory that is created at installation time on the root directory, mgm.

If the MQQSeries configuration file is readable, and the DefaultPrefix attribute of the
AllQueueManagers stanza is readable, errors are logged in the DefaultPrefix/errors directory.

For further information about configuration files, see Chapter 13. "Understanding configuration
files".

Operator messages

In MQSeries for IRIX, operator messages identify normal errors, typically caused directly by users
doing things like using parameters that are not valid on a command. Operator messages are national
language (NLS) enabled, with message catalogs installed in standard locations.

These messages are written to the associated window, if any, and are also written to the error log
AMQERRO1.LOG in the queue manager directory. For example:

/var/mgm/gmgrs/queue manager/errors

Some errors are logged to the AMQERRO1.LOG file in the queue manager directory and others to
the @SYSTEM directory copy of the etror log.

Example error log

This example shows part of a section of an MQSeries for IRIX error log:

08/01/95 11:41:56 AMQB8003: MQSeries queue manager started.
EXPLANATION: MQSeries queue manager janet started.

ACTION: None.

08/01/95 11:56:52 AMQ9002: Channel program started.
EXPLANATION: Channel program "JANET" started.

ACTION: None.

08/01/95 11:57:26 AMQ9208: Error on receive from host "camelot

(9.20.12.34)".

EXPLANATION: An error occurred receiving data from "camelot
(9.20.12.34)" over TCP/IP. This may be due to a communications failure.
ACTION: Record the TCP/IP return code 232 (X"E8") and tell the
systems administrator.

08/01/95 11:57:27 AMQ9999: Channel program ended abnormally.
EXPLANATION: Channel program "JANET" ended abnormally.

ACTION: Look at previous error messages for channel program
"JANET" in the error files to determine the cause of the failure.
08/01/95 14:28:57 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

08/02/95 15:02:49 AMQ9002: Channel program started.
EXPLANATION: Channel program "JANET" started.

ACTION: None.

08702795 15:02:51 AMQ9001: Channel program ended normally.
EXPLANATION: Channel program "JANET" ended normally.

ACTION: None.

08/02/95 15:09:27 AMQ7030: Request to quiesce the queue manager
accepted. The queue manager will stop when there is no further
work for it to perform.

EXPLANATION: You have requested that the queue manager end when
there is no more work for it. |In the meantime, it will refuse
new applications that attempt to start, although it allows those
already running to complete their work.

ACTION: None.

08/02/95 15:09:32 AMQ8004: MQSeries queue manager ended.
EXPLANATION: MQSeries queue manager janet ended.

ACTION: None.

Dead-letter queues

Messages that cannot be delivered for some reason are placed on the dead-letter queue. You can
check whether the queue contains any messages by issuing an MQSC DISPLAY QUEUE
command. If the queue contains messages, you can use the browse sample application (AMQSBCG)
provided to browse messages on the queue using MQGET. The sample application steps through
all the messages on a named queue for a named queue manager, displaying both the message
descriptor and the message context fields for all the messages on the named queue.

You must decide how to dispose of any messages found on the dead-letter queue, depending on the
reasons that the messages have been put on the queue.

Problems may occur if you do not have a dead-letter queue on each queue manager you are using,.
The supplied sample program amgscoma. tst creates the default objects for a queue manager,
including a dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE.

Configuration files and problem determination

Configuration file errors typically prevent queue managers from being found and result in queue
manager unavailable type errors.

There are several checks you can make on the configuration files:
Ensure that the configuration files exist
Ensure that they have appropriate permissions, for example:

rw-rw-r-- 1 mgm mgm 1371 Sep 17 14:32 /var/mgm/mgs.ini

Ensure that the MQSeries configuration file references the correct queue manager and log
directories

Using trace

MQSeries for IRIX uses the following commands for the trace facility:

strmqtrc - see strmgqtre (Start MQ)Series trace)

dspmqtrc - see dspmgqtrc (Display MQSeries formatted trace output)

endmaqtrc - see endmqtrc (End MQSeries trace)

The trace facility uses one file for each entity being traced, in which trace information is recorded.
Files associated with trace are created in a fixed location in the file tree, which is /var/mgm/trace.
All queue managers, all early tracing and all @SYSTEM tracing takes place to files in this directory.

Note: It is possible to accommodate production of large trace files by mounting a temporary
filesystem over this directory.

File names for trace files.

Trace file names are constructed in the following way:

AMQppppp - TRC
where PPPPP is the PID of the process producing the trace.
Notes:

1. The value of the process id can contain fewer, or more, digits than shown in the example.

2. 'There will be one trace file for each process running as part of the entity being traced.

Example trace data

The following example is an extract of an MQSeries for IRIX trace:

Figure 28. Sample MQSeries for IRIX trace

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

30D 3.290727552 0.000000 MQS FNC Exit.... 12884.1 xllListenSelectAccept..
30D 3.290787328 0.059776 MQS CEI Entry... 12884.1 xcsFreeQuickCell 0O

30D 3.290820736 0.033408 MQS CEl Entry.... 12884.1 xllISpinLockRequest O

30D 3.290841088 0.020352 MQS CEIl Entry...._. 12884 .1 xI1CompareAndSwap O

30D 3.290861440 0.020352 MQS FNC Exit...... 12884.1 xI1I1CompareAndSwap ..
30D 3.290875520 0.014080 MQS FNC Exit..... 12884.1 xIlISpinLockRequest ..
30D 3.291131520 0.256000 MQS FNC Entry.... 12884.1 xstFreeCell 0O

30D 3.291151744 0.020224 MQS FNC Exit..... 12884.1 xstFreeCell rc=00000000
30D 3.291255296 0.103552 MQS CEIl Entry.... 12884.1 xlISpinLockRelease 0O

30D 3.291274112 0.018816 MQS FNC Exit..... 12884.1 xIlISpinLockRelease ..
30D 3.291292288 0.018176 MQS CEI Exit.... 12884.1 xcsFreeQuickCell rc=..
30D 3.291317632 0.025344 MQS FNC Exit!.. 12884.1 xllWaitSocketEvent
rc=108..

30D 3.291337344 0.019712 MQS CEIl Exit!. 12884.1 xcsWaitEventSem rc=10806020
30D 3.291366528 0.029184 MQS CEIl Exit! 12884.1 zcpReceiveOnLink rc=20805311
30D 3.291398400 0.031872 MQS FNC Entry 12884.1 zxcProcessChildren O

30D 3.291752448 0.354048 MQS CEIl Entry. 12884.1 xcsRequestMutexSem O

Notes:

1.

codes are present.

In this example the data is truncated. In a real trace, the complete function names and return

2. 'The return codes are given as values, not literals.

First failure support technology

Information which, on the OS/2 and AIX platforms, is normally recorded in FEST logs is, on
MQSeries for IRIX, recorded in a file in the /var/mgm/errors directory.

These errors are normally severe, unrecoverable errors and indicate either a configuration problem
with the system or an MQSeries internal error.

How to examine the FFSTs

The files are named AMQnnnnn.mm. FDC, where:

nnnnn is the process id reporting the error

mm is a sequence number, normally 0.

When a process creates an FEST it also sends a record to syslog. The record contains the name of
the FEST file to assist in automatic problem tracking.

The syslog entry is made at the "user.error” level. See the MQSeries for IRIX documentation on
syslog.conf for details on how to configure this.

A typical FFST is shown in Figure 29.

Figure 29. Sample MQSeries for IRIX First Failure Symptom Report.

MQSeries First Failure Symptom Report

Date/Time - Friday July 14 14:06:52 BST 1995
Host Name :—- unknown

PIDS - 5697-176

LVLS - 220

Product Long Name :- MQSeries for IRIX

Vendor - Willow Technology, Inc.

Probe Id :- XC130003

Application Name :- MQM

Component .- xehExcepti

Build Date = Jul 14 1998

Userid - 00000231 (mgm)

Process - 00015967

Major Errorcode - XecSTOP

Minor Errorcode - OK

Probe Type - HALT6109

Probe Severity -1

Probe Description :- AMQ6125: An internal MQSeries error has occurred.
Arithl - 11 b

IMOM Function Stack
x11TidyUpSems
XCSFFST

IMOM Trace History

The Function Stack and Trace History are used by Willow Technology to assist in problem
determination. In most cases there is little that the system administrator can do when an FFST is
generated, apart from raising problems through the support centers.

However, there is one set of problems that they may be able to solve. If the FFST shows "out of
resource", "out of space on device", or "invalid parameter" descriptions when calling one of the IPC
functions, for example, semop or shmget, it is likely that the relevant kernel parameter limit has

been exceeded.

If the FEST shows a problem with setitimer, it is likely that a change to the kernel timer
parameters is needed.

To resolve these problems, increase the IPC limits, rebuild the kernel and restart the machine. See

"Kernel configuration" for further details.

Problem determination with clients

An MQI client application receives MQRC_* reason codes in the same way as non-client MQI
applications. However, there are now additional reason codes for error conditions associated with
clients. For example:

Remote machine not responding
Communications line error
Invalid machine address

The most common time for errors to occur is when an application issues an MQCONN and
receives the response MQRC_Q_MQR_NOT_AVAILABLE. An error message, written to the
client log file, explains the cause of the error. Messages may also be logged at the server depending
on the nature of the failure.

Terminating clients

Even though a client has terminated it is still possible for the process at the server to be holding its
queues open. Normally, this will only be for a short time until the communications layer detects that
the partner has gone.

Error messages with clients

When an error occurs with a client system, error messages are put into the error files associated with
the server, if possible. If the error cannot be placed there, the client code attempts to place the error
message in an error log in the root directory of the client machine.

0OS/2 and UNIX systems clients

Error messages for OS/2, and UNIX systems clients are placed in the error logs in the same way as
they are for the respective MQSeries server systems. Typically, these files appear in
/var/mgm/errors.

For more information on clients see the MQSeries Clients book.
DOS and Windows clients

The location of the log file AMQERROL.LOG is set by the MQDATA environment variable. The
default location, if not overridden by MQDATA, is:

C:\
Working in the DOS environment involves the environment variable MQDATA.

This is the default library used by the client code to store trace and error information; it also holds
the directory name that the gm.ini file is stored in (needed for NetBIOS setup). If not specified, it

defaults to the C drive.
The names of the default files held in this library are:
AMQERRO1.LOG
For error messages.
AMQERRO1.FDC

For First Failure Data Capture messages.

Part 2. Reference section

Chapter 15. MQSeries control commands

This chapter contains reference material for the control commands used with MQSeries for IRIX.
All commands in this chapter can be issued from an IRIX shell. These commands are case-sensitive.

Names

In general, the names of MQSeries objects can have up to 48 characters. This rule applies to all the
following objects:

Queue managers
Queues
Process definitions
The maximum length of channel names is 20 characters.
The characters that can be used for all MQSeries names are:
Uppercase A-Z
Lowercase a-z
Numerics 0-9
Period ()
Underscore (_)
Forward slash (/) (see note (NMSNT))
Percent sign (%) (see note (NMSNT))
Notes:

1. (NMSNT) Forward slash and percent are special characters. If you use cither of these
characters in a name, the name must be enclosed in double quotation marks everywhere it is
used.

2. Leading or embedded blanks are not allowed.

3. National language characters are not allowed.

4. Names may be enclosed in double quotation marks, but this is only essential if special
characters are included in the name.

How to read syntax diagrams

This chapter contains syntax diagrams (sometimes referred to as "railroad" diagrams).

Each syntax diagram begins with a double right arrow and ends with a right and left arrow pair.
Lines beginning with a single right arrow are continuation lines. You read a syntax diagram from left
to right and from top to bottom, following the direction of the arrows.

Other conventions used in syntax diagrams are:

Figure 30. How to read syntax diagrams

Convention

Meaning

pr—>—E—C

'You must specify values A, B, and C. Required values are shown on
the main line of a syntax diagram.

[You may specify value A. Optional values are shown below the
main line of a syntax diagram.

Values A, B, and C are alternatives, one of which you must specify.

L

¥

Values A, B, and C are alternatives, one of which you may specify.

k)

'You may specify one or more of the values A, B, and C. Any
required separator for multiple or repeated values (in this example,
the comma (,)) is shown on the arrow.

Values A, B, and C are alternatives, one of which you may specify. If

- A _ [you specify none of the values shown, the default A (the value
- | R " [shown above the main line) is used.
C

The syntax fragment Name is shown separately from the main
Fr— Name | * [syntax diagram.

MName:
| Iy |

Inl—BJ |

b

Example syntax diagram

Here is an example syntax diagram that describes the hello command:
w—rhello

P
Ll |

] |—, how are j.n'c:au?J

e

According to the syntax diagram, these are all valid versions of the hello command:

hello

hello name

hello name, name

hello name, name, name

hello, how are you?

hello name, how are you?

hello name, name, how are you?

hello name, name, name, how are you?

Note that the space before the name value is significant, and that if you do not code name at all, you
must still code the comma before how are you?

Syntax help

You can obtain help about the syntax of any of the commands in this chapter by entering the
command followed by a question mark. MQSeries responds by listing the syntax required for the
selected command. The syntax shows all the parameters and variables associated with the command.
Various parentheses are used to indicate whether an item in the list is required or not:

CmdName [-x OptParam] (-¢ | -b) { -p principal } argument
Where
CmdName

The command name for which help has been requested

[-x OptParam]

The brackets indicate that this is an optional parameter.
(-c| -b)

A mandatory field. In the case shown, you must select one of the flags c or b
{ -p principal }

An optional list of variables that you may supply, but, if this is shown, at least one variable must
be provided when you enter the command.

argument

An argument required to be supplied with this command, mandatory if shown on the response
to the query.

Examples

1. Result of entering endmgm ?

endmgm [-z][-c | -i | -p] QMgrName

2. Result of entering rcdmqimg ?

rcdmgimg [-z] [-m QMgrName] -t ObjType [GenericObjName]

crtmqgcvx (Data conversion)

Purpose

Use the Crtmqgcvx command to create a fragment of code that performs data conversion on data
type structures. The command generates a C function that can be used in an exit to convert your C
structures.

The command reads an input file containing a structure or structures to be converted. It then writes
an output file containing a code fragment or fragments to convert those structures.

For further information about this command and how to use it, refer to the MQSeries Distributed
Queuing Guide.

F 1

pe—crtmocyx—Sonrcefile—TargetFile .

Flags/parameters

SourceFile
Specifies the input file containing the C structures to be converted.
TargetFile
Specifies the output file containing the code fragments generated to convert the structures.

Return codes

0 Command completed normally

10 Command completed with unexpected results
20 An error occurred during processing
Examples

The following example shows the results of using the data conversion command against a source C
structure. The command issued is:

crtmgcvx source.tmp target.c

The input file, source. tmp looks like this:

/* This is a test C structure which can be converted by the */
/* crtmqcvx utility */

struct my_structure

{

int code;
MQLONG value;

The output file, target.c, produced by the command is shown below. You can use these code
fragments in your applications to convert data structures. However, if you do so, you should
understand that the fragment uses macros supplied in the MQSeries header file amgsvmha.h.

MQLONG Convertmy structure(
PMQBYTE *in_cursor,
PMOQBYTE *out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,

MQLONG MsgEncoding,
MQLONG RegEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

{ MQLONG ReturnCode = MQRC_NONE;
ConvertLong(1l); /* code */
AlignLong(Q);

ConvertLong(1); /* value */

Fail:

return(ReturnCode);

}

crtmgm (Create queue manager)

Purpose

Use the crtmgm command to create a local queue manager. Once a queue manager has been
created, use the StrmMQM command to start it.

¥

p—ocrtmgn

-lc

L)

Text
DefaultTransmiss ianinene—
Max imumkaondiel imit

Intervalvalue
Deadietterfuene
Max imumiip coneri ttedMessage s—

L |

-11

IMarName——————— =
-1 LogFileSize———
-1d Lagfth
-lp LogPrimerviiles—
-ls LogSecondaryFiles—

Flags/parameters

QMgrName

Specifies the name of the queue manager to be created. The name can contain up to 48
characters. This must be the last item in the command.

Optional parameters

-Cc Text

Specify some descriptive text for this queue manager. The default is all blanks.

You can use up to 64 characters. If special characters are required, the description must be
enclosed in double quotes.

-d DefaultTransmissionQueue

Specifies the name of the local transmission queue that remote messages are placed on if a
transmission queue is not explicitly defined for their destination. There is no default.

-h MaximumHandleLimit

Specifies the maximum number of handles that any one application can have open at the same
time.

Specify a value in the range one through 999 999 999. The default value is 256.

Specifies that this queue manager is to be made the default queue manager. The new queue
manager replaces any existing queue manager as the default.

If you accidentally use this flag and wish to revert to an existing queue manager as the default
queue manager, you can edit the DefaultQueueManager stanza in the MQSeries configuration
file. See Chapter 13. "Understanding configuration files" for information about configuration
files.

IntervalValue

Specifies the trigger time interval in milliseconds for all queues controlled by this queue manager.
This value specifies the time after the receipt of a trigger generating message when triggering is
suspended. That s, if the arrival of a message on a queue causes a trigger message to be put on
the initiation queue, any message arriving on the same queue within the specified interval does
not generate another trigger message.

You can use the trigger time interval to ensure that your application is allowed sufficient time to
deal with a trigger condition before it is alerted to deal with another on the same queue. You
may wish to see all trigger events that happen; if so, set a low or zero value in this field.

Specify a value in the range zero through 999 999 999. The default is 999 999 999 milliseconds, a
time of more than 11 days. Allowing the default to be taken effectively means that triggering is
disabled after the first trigger message. However, triggering can be reenabled by an application
servicing the queue using an alter queue command to reset the trigger attribute.

DeadLetterQueue

Specifies the name of the local queue that is to be used as the dead-letter (undelivered-message)
queue. Messages are put on this queue if they cannot be routed to their correct destination.

The default if the attribute is omitted is no dead-letter queue.

MaximumUncommittedMessages

Specifies the maximum number of uncommitted messages under any one syncpoint. That is, the
sum of:

The number of messages that can be retrieved from queues.
The number of messages that can be put on queues.
Any trigger messages generated within this unit of work.
This limit does not apply to messages that are retrieved or put outside a syncpoint.

Specify a value in the range one through 10 000. The default value is 1000 uncommitted

messages.

Error messages are to be suppressed.

This flag is normally used within MQSeries to suppress unwanted error messages. As use of this
flag could result in loss of information, it is recommended that you do not use it when entering
commands on a command line.

The following set of flags is used to define the logging to be used by the queue manager being
created. For more information about logs, see "Using the log for recovery".

-Ic

Circular logging is to be used. This is the default logging method.
-11

Linear logging is to be used.
-1f LogFileSize

Specifies the size of the log files in multiples of 4 KB. The minimum value is 64 KB, and the
maximum is 16384 KB. The default value is 1024 KB, giving a default log size of 4 MB.

-1d LogPath

Specifies the directory to be used to hold the log files. The default is /var/mgm/log. The default
can also be changed when MQSeries is customized.

User ID mgm and group mgm must have full authorities to the log files. If you change the
locations of these files, you must give these authorities yourself. This is done automatically if the
logs files are in their default locations.

-Ip LogPrimaryFiles

Specifies the number of primary log files to be allocated. The default value is 3, the minimum is
2, and the maximum is 62.

-Is LogSecondaryFiles

Specifies the number of secondary log files to be allocated. The default value is 2, the minimum
is 1, and the maximum is 61.

Note: The total number of log files is restricted to 63, regardless of the number requested.
Return codes

0 Queue manager created

8 Queue manager already exists

49 Queue manager stopping

69 Storage not available

70 Queue space not available

71 Unexpected error

72 Queue manager name etror

100 Log location invalid

11 Queue manager created. However, there was a problem processing the default queue

manager definition in the product configuration file. The default queue manager
specification may be incorrect.

115 Invalid log size
Examples

1. This command creates a default queue manager named Paint.queue.manager, which is
given a description of Paint shop. It also specifies that linear logging is to be used:

crtmgm -c ""Paint shop"™ -1l -g Paint.queue.manager

2. 'This example requests a number of log files. 2 primary and 3 secondary log files are
specified.

crtmgm -c ""Paint shop” -1l -Ip 2 -Is 3 -gq Paint.queue.manager

3. In this example, another queue manager, travel, is created. The trigger interval is defined as
5000 milliseconds (or 5 seconds) and its dead-letter queue is specified as
SYSTEM.DEAD.LETTER.QUEUE.

crtmgm -t 5000 -u SYSTEM.DEAD.LETTER.QUEUE travel

Once a trigger event has been generated, further trigger events are disabled for five seconds.
Related commands
strmgm
Start queue manager
endmgm
End queue manager
dltmgm

Delete queue manager

ditmgm (Delete queue manager)

Purpose

Use the dIitmgm command to delete a specified queue manager. All objects associated with this
queue manager are also deleted. Before you can delete a queue manager you must end it using the
endmgm command.

F

pee—1] | tmuﬂ—l_—_l—g*lgmhme »
-2z

Flags/parameters
QMgrName
Specifies the name of the queue manager to be deleted.
Optional parameters
-z
Suppress error messages.

Return codes

0 Queue manager deleted

3 Queue manager being created

S Queue manager running

16 Queue manager does not exist

49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name etror

100 Log location invalid

112 Queue manager deleted. However, there was a problem processing the default queue

manager definition in the product configuration file. The default queue manager
specification may be incorrect.

Examples

1. The following command deletes the queue manager saturn.queue.manager.

dltmgm saturn.queue.manager

2. 'The following command deletes the queue manager travel and also suppresses any
messages caused by the command.

ditmgm -z travel

Related commands
crtmgm

Create queue manager
strmgqm

Start queue manager
endmgm

End queue manager

dspmgaut (Display authority)
Purpose

Use the dspmqgaut command to display the current authorizations to a specified object. Only one
group may be specified.

If a user ID is a member of more than one group, examine the authorizations of each group to
determine all the authorizations that apply to the user I1D.

pe—dspmaaut -n OhjectName— -t ObhjectTyvpe——k

|— -m E&ngﬂaﬂEJ

-—E -g arouphams
-p Principa!ﬂameJ L -3 EerricefampanentJ

L)
F 1

Flags/parameters

-t ObjectType
Specifies the type of object on which the inquiry is to be made. Possible values are:
queue or q A queue or queues matching the object name parameter
process or prcs A process
gmgr A queue manager object

Optional parameters

-m QMgrName
Specifies the name of the queue manager on which the inquiry is to be made.
-n ObjectName

Specifies the name of the object on which the inquiry is to be made.
This is a required parameter UNLESS it is the queue manager itself.
You must specify the name of a queue manager, queue, or process definition.

-g GroupName

Specifies the name of the user group on which the inquiry is to be made. You can only specify
one name, which must be the name of an existing user group.

-p PrincipalName
Specifies the name of a user whose authorizations to the specified object are to be displayed.
-s ServiceComponent

This parameter only applies if you are using installable authorization services, otherwise it is
ignored.

If installable authorization services are supported, this parameter specifies the name of the
authorization service to which the authorizations apply. This parameter is optional; if it is not
specified, the authorization update is made to the first installable component for the service.

Returned parameters

This command returns an authorization list, which can contain none, one, or mote authotization
parameters. Each authorization parameter returned means that any user ID in the specified group
has the authority to perform the operation defined by that parameter.

Figure 31 shows the authorities that can be given to the different object types.

Figure 31. Security authorities from the dspmgaut command

Authority Queue Process Qmagr
all Yes Yes Yes
alladm Yes Yes Yes
allmqi Yes Yes Yes
altusr Yes
browse Yes
chg Yes Yes Yes
clr Yes
connect Yes
crt Yes Yes Yes
dlt Yes Yes Yes
dsp Yes Yes Yes
put Yes
inq Yes Yes Yes
oct Yes
passall Yes
passid Yes
set Yes Yes Yes

setall Yes Yes

setid Yes Yes

The following list defines the authorizations associated with each parameter:

all

Use all operations relevant to the object.
alladm

Perform all administration operations relevant to the object.
allmqi

Use all MQI calls relevant to the object.
altusr

Specify an alternate user ID on an MQI call.
browse

Retrieve a message from a queue by issuing an MQGET with the BROWSE option.
chg

Change the attributes of the specified object, using the appropriate command set.
chgaut

Specify authorizations for other groups of users on the object, using the Setmgaut command.
clr

Clear a queue (PCF command Clear queue only).
connect

Connect the application to the specified queue manager by issuing an MQCONN.
crt

Create objects of the specified type, using the appropriate command set.
dit

Delete the specified object, using the appropriate command set.
dsp

Display the attributes of the specified object, using the appropriate command set.
get

Retrieve a message from a queue by issuing an MQGET.
ing

Make an inquiry on a specific queue by issuing an MQINQ.
passall

Pass all context.

passid

Pass the identity context.
put

Put a message on a specific queue by issuing an MQPUT.
set

Set attributes on a queue from the MQI by issuing an MQSET.
setall

Set all context on a queue.
setid

Set the identity context on a queue.
start

Start a queue manager, using the Strmgm command.
stop

Stop a queue manager, using the endmgm command.

The authorizations for administration operations, where supported, apply to these command sets:
Control commands
MQSC commands
PCF commands

Return codes

0 Successful operation

36 Invalid arguments supplied
40 Queue manager not available
49 Queue managet stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error
133 Unknown object name

145 Unexpected object name

146 Object name missing

147 Object type missing

148 Invalid object type
149 Entity name missing
Examples

The following example shows a command to display the authorizations on queue manager
saturn.queue.manager associated with user group staff:

dspmgaut -m saturn.queue.manager -t gmgr -g staff

The results from this command are:

Entity staff has the following authorizations for object :
get
browse
put
ing
set
connect
altusr
passid
passall
setid

Related commands

Setmqgaut

Set or reset authority

dspmqcsv (Display command server)

Purpose

Use the dspmqcsv command to display the status of the command server for the specified queue
manager.

The status can be one of the following:
Starting
Running
Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets
Ending
Stopped

pee—] 5 pMOC S ¥ — Mg N .

F 1

Flags/parameters
QMgrName

Specifies the name of the local queue manager for which the command server status is being
requested.

Return codes

0 Command completed normally

10 Command completed with unexpected results
20 An error occurred during processing
Examples

The following command displays the status of the command server associated with venus.q.mgr:

dspmgcsv venus.q.mgr

Related commands
strmqcsv

Start a command server

endmqcsv

End a command server.

dspmqfls (Display MQSeries files)
Purpose

Use the dspmqfls command to display the real file system name for all MQSeries objects that match
a specified criterion. You can use this command to identify the files associated with a particular
MQSeries object. This is useful for backing up specific objects. See "Understanding MQSeries file

names" for further information about name transformation.

F

re—idspmagfls Generi cfibjNomes »

|— -m @ng'maﬂrJ |— -t DbJTypeJ

Flags/parameters
GenericObjName

Specifies the name of the MQSeries object. The name is a string with no flag and is a required
parameter. If the name is omitted an error is returned.

This parameter supports a wild card character * at the end of the string.
Optional parameters
-m QMgrName

Specifies the name of the queue manager for which files are to be examined. If omitted, the
command operates on the default queue manager.

-t ObjType

Specifies the MQSeries object type. The following list shows the valid object types. The
abbreviated name is shown first followed by the full name.

*or all
All object types. This is the default.
q Or queue
A queue or queues matching the object name parameter
ql or glocal
A local queue
qa Or qalias

An alias queue

gr Or gremote
A remote queue
gm Or gmodel
A model queue
gmgr
A queue manager object
prcs OF process
A process

Note: You will need to prevent the shell from interpreting the meaning of special characters
such as "*'. To accomplish this, use 'quoting’.

re are a number of ways of 'quoting’ depending on your shell. For example, either single
tation marks, double quotation marks, or a backslash, are used by some shells.

Return codes

0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing
Examples
1. The following command displays the details of all objects with names beginning

SYSTEM.ADMIN that are defined on the default queue manager.

dspmgfls SYSTEM.ADMIN*

2. The following command displays file details for all processes with names beginning PROC
defined on queue manager RADIUS.

dspmgfls -m RADIUS -t prcs PROC*

dspmgqtrc (Display MQSeries formatted trace output)

Purpose

Use the dspmqtrc command to display MQSeries formatted trace output.

L)
A

p—dspmatrc TnputfileName

L -t FamatTempIateJ

Flags/parameters

InputFileName

The name of the file containing the unformatted trace. For example
/var/mgm/trace/AMQ12345_TRC..

Optional parameters
-t FormatTemplate

is the name of the template file containing details of how to display the trace. The default value
is mgmtop/lib/amgtrc. fmt

Examples

This command ends tracing of data for a queue manager called QM1.

endmgtrc -m QM1

Related commands
endmaqtrc

End MQSeries trace
strmqtrc

Start MQSeries trace

dspmqtrn (Display MQSeries transactions)

Purpose

Use the dspmqtrn command to list the transactions that are in prepared status in a two-phase
commit procedure and that are known to a queue manager (see warning below).

Each transaction is displayed as a transaction number (a human-readable transaction identifier), the
transaction state, and the transaction ID. Transaction IDs can be up to 128 characters long, hence
the need for a transaction number.

p—dspmatrn

L)
F !

|— @ngﬂameJ

Warning. The only time that you can expect to use this command is if you are using an external
transaction manager and are involved with two-phase commitment procedures. If you do not use
two-phase commit, do not use this command. This command should be used only if the syncpoint
manager has failed to resolve a transaction.

Optional parameters
QMgrName

Specifies the name of the queue manager whose transactions are to be examined. If omitted, the
command operates on the default queue manager.

Return codes

0 Successful operation

36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error
102 No transactions found

Related commands

rsvmqtrn

Resolve MQSeries transaction

endmqcsv (End command server)

Purpose

Use the endmqcsv command to stop the command server on the specified queue manager.

F

-C
n—enqucsv—H—@*}grﬂame »
-i

Flags/parameters
QMgrName
Specifies the name of the queue manager for which the command server is to be ended.
Optional parameters
-C

Specifies that the command server is to be stopped in a controlled manner. The command
server is allowed to complete the processing of any command message that it has already started.
No new message is read from the command queue.

This is the default.

Specifies that the command server is to be stopped immediately. Actions associated with a
command message currently being processed may not be completed.

Return codes

0 Command completed normally

10 Command completed with unexpected results
20 An error occurred during processing
Examples

1. The following command stops the command server on queue manager
saturn.queue.manager:

endmgcsv -c saturn.queue.manager

The command server can complete processing any command it has already started before it
stops. Any new commands received remain unprocessed in the command queue until the
command server is restarted.

2. The following command stops the command server on queue manager pluto immediately:

endmgcsv -i pluto

Related commands
strmqcsv

Start a command server.
dspmqcsv

Display the status of a command server.

endmgm (End queue manager)

Purpose

Use the endmgm command to end (stop) a specified local queue manager. This command stops a
queue manager in one of three modes:

Normal or quiesced shutdown
Immediate shutdown
Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not affected. You can
restart the queue manager using the Strmgm (Start queue manager) command.

To delete a queue manager, you must stop it and then use the dltmgm (Delete queue manager)
command.

e e—g [M T E;Z} L—zJ MG - Neame .

F !

Flags/parameters
QMgrName
Specifies the name of the message queue manager to be stopped.
Optional parameters
-C

Controlled (or quiesced) shutdown. The queue manager stops but only after all applications have
disconnected. Any MQI calls currently being processed are completed. This is the default.

Immediate shutdown. The queue manager stops after it has completed all the MQI calls
currently being processed. Any MQI requests issued after the command has been issued are
failed. Any incomplete units of work are rolled back when the queue manager is next started.

Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For example, when a queue
manager does not stop as a result of a normal endmgm command.

The queue manager stops without waiting for applications to disconnect or for MQI calls to
complete. This can give unpredictable results for MQI applications. All processes in the queue
manager that fail to stop are terminated 30 seconds after the command is issued.

Suppress error messages on the command.

Return codes

0 Queue manager ended.

3 Queue manager being created
16 Queue manager does not exist.
40 Queue manager not available.
49 Queue manager stopping.

69 Storage not available.

71 Unexpected error.

72 Queue manager name error.
Examples

The following examples show commands that end (stop) the specified queue managers.

1. This command ends the default queue manager in a controlled way. All applications
currently connected are allowed to disconnect.

endmgm

2. 'This command ends the queue manager named saturn.queue.manager immediately. All
current MQI calls complete, but no new ones are allowed.

endmgm -i saturn.queue.manager

Related commands
crtmgm

Create a queue manager
strmgm

Start a queue manager

ditmgm

Delete a queue manager

endmgqtrc (End MQSeries trace)

Purpose

Use the endmqtrc command to end tracing for the specified entity or all entities.

Fe—endmakrec t
-4
-m —Mgriame T T
-g

i

Optional parameters
-m QMgrName

Is the name of the queue manager for which tracing is to be ended, or is the literal value
@SYSTEM used to end tracing of channels and the command server.

A maximum of one -m flag and associated queue manager name can be supplied on the
command.

An -m flag and queue manager name can be specified on the same command as the -e flag.

If this flag is specified, early tracing is ended.

If this flag is specified all tracing is ended.

This flag must be specified alone.
Return codes
AMQ5611

This message is issued if arguments that are not valid are supplied to the command.
Examples

This command ends tracing of data for a queue manager called QM1.

endmgtrc -m QM1

Related commands

dspmqtrc

Display formatted trace output
strmaqtrc

Start MQSeries trace

rcdmgimg (Record media image)

Purpose

Use the rcdm@img command to write an image of an MQSeries object, or group of objects, to the
log for use in media recovery. Use the associated command rcrmqobj to recreate the object from

the image.

This command is used with an active queue manager. Further activity on the queue manager is

logged so that, although the image becomes out of date, the log records reflect any changes to the

object.

p—rcdmaimg -t DhjectTvpe -
R — B

F—ienericOhj Name —

Flags/parameters
-t ObjectType
Specifies the type of objects whose images are to be recorded. Valid object types are:
PICs or pProcess
Processes
q or queue
All types of queue
gl or glocal
Local queues
ga or galias
Alias queues
qr or gremote
Remote queues
gm or gmodel

Model queues

gmagr

Queue manager object

* or all
All types of object
Note: You will need to prevent the shell from interpreting the meaning of special characters

such as "*'. To accomplish this, use 'quoting.

:re are a number of ways of 'quoting' depending on your shell. For example, either single
tation marks, double quotation marks, or a backslash, are used by some shells.

Optional parameters

-Mm

QMgrName

Specifies the name of the queue manager for which images are to be recorded. If omitted, the
command operates on the default queue manager.

Suppress error messages.

GenericObjName

Specifies the name of the object that is to be recorded. This parameter may have a trailing
asterisk to indicate that any objects with names matching the portion of the name prior to the
asterisk are to be recorded. This parameter may be omitted if you are recording a queue
manager.

Return codes

0
36
40
49
68
69
71
72
119
128
131

Successful operation

Invalid arguments supplied
Queue manager not available
Queue manager stopping

Media recovery is not supported
Storage not available
Unexpected error

Queue manager name error
User not authorized

No objects processed

Resource problem

132 Object damaged
135 Temporary object cannot be recorded
Examples

The following command records an image of the queue manager object saturn.queue._manager in
the log.

mqimg -t gmgr -m saturn.queue.manager

Related commands

rcrmqobj

Recreates a queue manager ObjCC'E.

rcrmqgobj (Recreate object)

Purpose

Use the rcrmgobj command to recreate an object, or group of objects, from their images contained

in the log. Use the associated command, rcdmqgimg, to record the object images to the log.

This command must be used on a running queue manager. All activity on the queue manager after
the image was recorded is logged. To recreate an object you must replay the log to recreate events

that occurred after the object image was captured.

p=—rcrmaob,j

-t DhjectTvpe
L -m —@'-!grnhmeJ L -z]

p—iaenericOb j Name

L}
A

Flags/parameters
-t ObjectType
Specifies the type of objects to be recreated. Valid object types are:
PIcs or Process
Processes
q or queue
All types of queue
gl or glocal
Local queues
ga or galias
Alias queues
qr or gremote
Remote queues
gm or gmodel
Model queues
*or all

All the above

syncfile

The channel synchronization file

Note: Using this flag causes the channel synchronization file to be regenerated for the queue
manager specified. This is necessary because the file is not saved by the rcdmqgimg
command.

Note: You will need to prevent the shell from interpreting the meaning of special characters

such as "'. To accomplish this, use 'quoting’.

re a number of ways of 'quoting’ depending on your shell. For example, either single
»n marks, double quotation marks, or a backslash, are used by some shells.

Optional parameters

-m QMgrName

Specifies the name of the queue manager for which objects are to be recreated. If omitted, the
command operates on the default queue manager.

Suppress error messages.

ObjectName

Specifies the name of the object that is to be recreated. This parameter may have a trailing
asterisk to indicate that any objects with names matching the portion of the name prior to the
asterisk are to be recreated.

If the object type is the channel synchronization file, the object name may be omitted. If an
object name is supplied for this type, it is ignored.

Return codes

0

36
40
49
66
68
69
71

Successful operation

Invalid arguments supplied
Queue manager not available
Queue manager stopping

Media image not available
Media recovery is not supported
Storage not available

Unexpected error

12 Queue manager name error

119 User not authorized

128 No objects processed

135 Temporary object cannot be recovered
136 Object in use

Examples

1. The following command recreates all local queues for the default queue manager:

rcrmgobj -t gl *

2. 'The following command recreates all remote queues associated with queue manager store:

rcrmgobj -m store -t qr

Related commands
rcdmgimg

Records a queue manager object in the log.

rsvmgtrn (Resolve MQSeries transactions)

Purpose
Use the rsvmqtrn command to give a commit or backout decision to an in-doubt transaction.

Note: This command must be used only in situations where you are certain that the transaction
will not be resolved by the normal protocols. Issuing this command may result in the
loss of transactional integrity between resource managers for a distributed transaction.

L)
F

pr—raymatrn B -C B -m —MgriName—T ransact ion
-b

Warning. The only time that you can expect to use this command is if you are using an external
transaction manager and are involved with two-phase commitment procedures.

If you do not use two-phase commit, do not use this command.
This command should be used only if the syncpoint manager has failed to resolve a transaction.
Flags/parameters
-c
Specifies a commit decision.
-b
Specifies a backout decision.
There is no default; you must supply one of these options.
-m QMgrName

Specifies the name of the queue manager whose transactions are to be resolved. The queue
manager name must be specified.

Transaction

Specifies the transaction number of the transaction of interest. The number can be determined
by using the dspmqtrn command to display all transactions on a queue manager that have been
left in a prepared (in-doubt) state.

Return codes

0 Successful operation

36 Invalid arguments supplied

40 Queue manager not available
49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name etror
85 Transactions not known

Related commands
dspmqtrn

Display list of prepared transactions.

runmgchi (Run channel initiator)

Purpose

Use the runmgchi command to run a channel initiator process. For more information about the use
of this command, refer to the MQSeries Distributed Queuing Guide.

pe—rLnmachi

L _q Initiotiongvome— U -m qMgriame—

Optional parameters
-q InitiationQName

Specifies the name of the initiation queue to be processed by this channel initiator. If not
specified, SYSTEM.CHANNEL.INITQ is used.

-m QMgrName

Specifies the name of the queue manager on which the initiation queue exists. If the name is
omitted, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, you should review the queue manager
error log that the channel is associated with for the error messages. You should also review the
@SYSTEM etror log as problems that occur before the channel is associated with the queue
manager are recorded there. For more information about error logs, see "Error logs".

runmgchl (Run channel)
Purpose
Use the runmgchl command to run either a Sender (SDR) or a Requester (RQSTR) channel.

The channel runs synchronously. To stop the channel, issue the MQSC command STOP
CHANNEL.

F

pr—runmach]— -c Chomne I Nome |_ -
- @ngNameJ

Flags/parameters
-c ChannelName
Specifies the name of the channel to run.
Optional parameters
-m QMgrName

Specifies the name of the queue manager with which this channel is associated. If no name is
specified, the default queue manager is used.

Return codes

0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue manager for the
error messages. You should also review the @SYSTEM error log because problems that occur
before the channel is associated with the queue manager are recorded there.

runmgdlg (Run dead-letter queue handler)

Purpose

Use the runmqdlg command to start the dead-letter queue (DLQ) handler, a utility that you can run
to monitor and handle messages on a dead-letter queue.

The dead-letter queue handler can be used to perform various actions on selected messages by
specifying a set of rules that can both select a message and define the action to be performed on that
message.

The runmqdlg command takes its input from stdin. When the command is processed, the results
and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter runmqdlq rules interactively.

By redirecting the input from a file, you can apply a rules table to the specified queue. The rules
table must contain at least one rule.

If the DLQ handler is used without redirecting stdin from a file (the rules table) the DLQ handler:
Reads its input from the keyboard
Does not start to process the named queue until it receives an end_of_file (ctrl-D) character.

For more information about rules tables and how to construct them, see ""The DI.Q) handler rules
table".

Syntax

F 1

re—runmad] g

P
| Ll

L
L
L Mg rName il

Optional parameters

The MQSC rules for comment lines and for joining lines also apply to the DLQ handler input
parameters.

QName
Specifies the name of the queue to be processed.

If no name is specified the dead letter queue defined for the local queue manager is used. If one
or more blanks (') are used, the dead letter queue of the local queue manager is explicitly
assigned.

A DLQ handler can be used to select particular messages on a dead-letter queue for special

processing. For example, this can be to redirect the messages to different dead-letter queues.
Subsequent processing with another instance of the DLQ) handler might then process the
messages, according to a different rules table.

QMgrName
The name of the queue manager that owns the queue to be processed.

If no name is specified, the default queue manager for the installation is used. If one or more
blanks (' ') are used, the default queue manager for this installation is explicitly assigned.

runmgsc (Run MQSeries commands)
Purpose

Use the runm@sc command to issue MQSC commands to a queue manager. MQSC commands
enable you to perform administration task, such as, defining, altering, or deleting a local queue
object. MQSC commands and their syntax is described in the MQSeries Command Reference.

You can invoke the runmgsc command in three modes:

Verify mode

MQSC commands are verified but not actually run. An output report is generated indicating the
success or failure of each command. This mode is only available on a local queue manager.

Direct mode
MQSC commands are sent directly to a local queue manager.
Indirect mode

MQSC commands are run on a remote queue manager. These commands are put on the
command queue on a remote queue manager and are run in the order in which they were
queued. Reports from the commands are returned to the local queue manager.

The runmqsc command takes its input from stdin. When the commands are processed, the results
and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter MQSC commands interactively.

By redirecting the input from a file you can run a sequence of frequently-used commands contained
in the file. You can also redirect the output report to a file.

Note: To run this command, you user ID must belong to usetr group mgm.

v |
1L NMGS C »
E -E LQHQJ"NGMEJ

F

-¥

- HﬂItTI.ﬂE—I___l—
-X

Optional parameters
-e

Prevents source text for the MQSC commands from being copied into a report. This is useful
when you enter commands interactively.

Specifies verification mode: verifies the specified commands without performing the actions.
This mode is only available locally. The -w and -x flags are ignored if they specified at the same
time.

-w WaitTime

Specifies indirect mode, that is, the MQSC commands are to be run on another queue manager.
1

You must have the required channel and transmission queues set up for this. See "Preparing
channels and transmission queues for remote administration" for more information.

WaitTime

Specifies the time, in seconds, the runmqsc waits for replies. Any replies received after this are
discarded, however, the MQSC commands are still run. Specify a time between 1 and 999 999
seconds

Each command is sent as an Escape PCF to the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) of the target queue manager.

The replies are received on queue SYSTEM.MQSC.REPLY.QUEUE and the outcome is added
to the report. This can be defined as either a local queue or a model queue.

Indirect mode operation is performed through the default queue manager.
This flag is ignored if the -v flag is specified.
-X

Specifies that the target queue manager is running under MVS/ESA. This flag applies only in
indirect mode. The -w flag must also be specified. In indirect mode, the MQSC commands are
written in a form suitable for the MQSeties for MVS/ESA command queue.

QMgrName

Specifies the name of the target queue manager on which the MQSC are to be run. If omitted, the
MQSC commands run on the default queue manager.

Return codes

00 MQSC command file processed successfully.

10 MQSC command file processed with errors--report contains reasons for failing
commands.

20 Error--MQSC command file not run.

Examples

1. Type in this command at the IRIX command prompt:

runmgsc

Now you can type MQSC commands directly at the IRIX command prompt. No queue

manager name was specified, therefore, the MQSC commands are processed on the default
queue manager.

2. Use this command to specify that MQSC commands are verified only:

runmgsc -v BANK < /u/users/commfile.in

Verifies the MQSC command file commfile.in in directory /u/users. The queue manager
name is BANK. The output is displayed in the current window.

3. 'This command runs the MQSC command file /var/mgm/mgsc/mgscfile. in. against the
default queue manager.

runmgsc < /var/mgm/mgsc/mgscfile.in > /var/mgm/mgsc/mgscfile.out

In this example, the output is directed to file /var/mgm/mgsc/mgscfile.out.

runmgtmc (Start client trigger monitor)

Purpose

Use the runmgtmc command to invoke a trigger monitor for a client. For further information
about using trigger monitors, refer to the MQSeries Application Programming Guide.

Note: This command is available ONLY on OS/2 and AIX clients.

—rL nmakme

|— -m EEH"!QI"NG.HEJ |— -q Initiatianﬁ?ﬂameJ

Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the client trigger monitor operates. If
omitted, the client trigger monitor operates on the default queue manager.

-q InitiationQName

Specifies the name of the initiation queue to be processed. If omitted,

SYSTEM.DEFAULT.INITIATION.QUEUE is used.
Return codes

0 Not used. The client trigger monitor is designed to run continuously and therefore not
to end. The value is reserved.

10 Client trigger monitor interrupted by an error.

20 Error--client trigger monitor not run.

runmgtrm (Start trigger monitor)

Purpose

Use the runmqtrm command to invoke a trigger monitor. For further information about using
trigger monitors, refer to the MQSeries Application Programming Guide.

pe—r L Mgk

|— -m QﬂgrﬂameJ |— -q Initiatiom!?ﬂameJ

Optional parameters
-m QMgrName

Specifies the name of the queue manager on which the trigger monitor operates. If omitted, the
trigger monitor operates on the default queue manager.

-g InitiationQName

Specifies the name of the initiation queue to be processed. If omitted,

SYSTEM.DEFAULT.INITIATION.QUEUE is used.
Return codes

0 Not used. The trigger monitor is designed to run continuously and therefore not to end.
Hence a value of 0 would not be seen. The value is reserved.

10 Trigger monitor interrupted by an error.

20 Error--trigger monitor not run.

setmqgaut (Set/reset authority)

Purpose

Use the setmqgaut command to change the authorizations to an object or to a class of objects.
Authorizations can be granted or revoked to any number of principals or groups.

Syntax

¥

L— -5 Serricetbmwanent—J

L

-p —Frincipal
-g —aronpNmme

MJI authorizations

Context authorizations b———

Administration authorizations |—
Generic authorizations

N1 authorizations:

i

rr—sotmoaut— -m (MgrNeme— -n ObJectName— -f ObjectTvpe———

Nerre
il

k3
F 3

+3tusr
—-altusr —

Context authorizations:

-

+pdssall
—passall —
+passid
—passid
+3ekall
—sekall
+aptid —
—sekid —

Administration authorizations:

i —

+chg
—chg
+clr —
—-clr —
+Ccpy —
+crt —
—-crt —
+d1t —
—-dlt —
+dsp —
_dsp —

(zeneric authorizations:

+a11

-a11
+a1ladm —
—alladm —
+317mqi —
—-allmgi —

Description

You can use this command both to $¢t an authorization, that is, give a user group or principal
permission to perform an operation, and to et an authorization, that is, remove the permission to
perform an operation. You must specify the user groups and principals to which the authorizations
apply and also the queue manager, object type, and object name of the object. You can specify any
number of groups and principals in a single command.

Caution:
If you specify a set of authorizations for a principal, the same authorizations are given to all
principals in the same primary group.

The authorizations that can be given are categorized as follows:
Authorizations for issuing MQI calls
Authorizations for MQI context
Authorizations for issuing commands for administration tasks
Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the command. Each
item in the list is a string prefixed by '+' or '-'. For example, if you include +put in the authorization
list, you are giving authority to issue MQPUT' against a queue. Alternatively, if you include -put in
the authorization list, you are removing the authorization to issue MQPUTs.

Authorizations can be specified in any order provided that they do not clash. For example,
specifying allmqi with set causes a clash.

You can specify as many groups or authorizations as you require in a single command.

If a user ID is a member of more than one group, the authorizations that apply are the union of the
authorizations of each group to which that user ID belongs.

Flags/parameters
-m QMgrName

Specifies the name of the queue manager of the object for which the authorizations are to be
changed. The name can contain up to 48 characters.

-t ObjectType
Specifies the type of object for which the authorizations are to be changed.
Possible values are:
q or queue

PIcs or process

gmar

Optional parameters

-n ObjectName
Specifies the name of the object for which the authorizations are to be changed.

This is a required parameter UNLESS it is the queue manager itself. You must specify the name
of a queue manager, queue, ot process, but must not use a generic name.

-p PrincipalName
Specifies the name of the principal for which the authorizations are to be changed.

You must have at least one principal or one group.

-g GroupName

Specifies the name of the user group whose authorizations are to be changed. You can specity
more than one group name, but each name must be prefixed by the '-g' flag.

-s ServiceComponent

This parameter applies only if you are using installable authorization services, otherwise it is
ignored.

If installable authorization services are supported, this parameter specifies the name of the
authorization service to which the authorizations apply. This parameter is optional; if it is not
specified, the authorization update is made to the first installable component for the service.

Authorizations

Specifies the authorizations to be given or removed. Each item in the list is prefixed by a '+'
indicating that authority is to be given, or a -, indicating that authorization is to be removed.
For example, to give authority to issue an MQPUT call from the MQI, specify +put in the list.
To remove authority to issue an Mgput call, specify -put.

Figure 32 shows the authorities that can be given to the different object types.

Figure 32. Specifying authorizations for different object types

Authority Queue Process Qmgr
all Yes Yes Yes
alladm Yes Yes Yes
allmqi Yes Yes Yes
altusr Yes
browse Yes
chg Yes Yes Yes
clr Yes
connect Yes
crt Yes Yes Yes
dlt Yes Yes Yes
dsp Yes Yes Yes
put Yes
inq Yes Yes Yes
get Yes
passall Yes
passid Yes
set Yes Yes Yes
setall Yes Yes
setid Yes Yes

Authorizations for MQI calls
get
Retrieve a message from a queue by issuing an MQGET.
browse
Retrieve a message from a queue by issuing an MQGET with the BROWSE option.
put
Put a message on a specific queue by issuing an MQPUT.
ing
Make an inquiry on a specific queue by issuing an MQINQ.
set
Set attributes on a queue from the MQI by issuing an MQSET.
connect
Connect the application to the specified queue manager by issuing an MQCONN.
altusr
Use an alternate user ID in a message.
See the MQSeries Application Programming Guide for more information about alternate user IDs.

Note: If you open a queue for multiple options, you have to be authorized for each of them.

Authorizations for context
passid

Pass identity context on the specified queue. The identity context is the same as that of the
request.

passall

Pass all context on the specified queue. All the context fields are copied from the original
request.

setid

Set identity context on the specified queue. This is used by special system utilities.

setall
Set all context on the specified queue. This is used by special system utilities.
Authorizations for commands

crt

Create objects of the specified type.
dit

Delete the specified object.
chg

Change the attributes of the specified object,
dsp

Display the attributes of the specified object.
cpy

Copy the attributes of the specified object (PCF Copy commands only).
clr

Clear the specified queue (PCF Clear queue command only).

Authorizations for generic operations

allmaqi
Use all MQI calls applicable to the object.
alladm
Perform all administration operations applicable to the object.
all
Use all operations applicable to the object.
Return codes

0 Successful operation

36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name etror

133 Unknown object name

145 Unexpected object name

146 Object name missing

147 Object type missing

148 Invalid object type

149 Entity name missing

150 Authortization specification missing
151 Invalid authorization specification
Examples

1. This example shows a command that specifies that the object on which authorizations are
being given is the queue 0range.quele on queue manager Saturn.queue.manager.

setmgaut -m saturn.queue.manager -n orange.queue -t queue -g tango +ing +alladm

The authorizations are being given to user group tango and the associated authorization list
specifies that user group tango:

Can issue mQing calls.

Has authority to perform all administration operations on that object.
2. In this example, the authorization list specifies that user group foxy:

Cannot issue any calls from the MQI to the specified queue.

Has authority to perform all administration operations on the specified queue.

setmgaut -m saturn.queue.manager -n orange.queue -t queue -g foxy -allmqi +alladm

Related commands
dspmqgaut

Display authority

strmqcsv (Start command server)
Purpose

Use the strm(Ccsv command to start the command server for the specified queue manager. This
enables MQSeries to process commands sent to the command queue.

re—ac trmoos y— Mg riName

F

Flags/parameters

QMgrName
Specifies the name of the queue manager for which the command server is to be started.

Return codes

0 Command completed normally

10 Command completed with unexpected results.
20 An error occurred during processing
Examples

The following command starts a command server for queue manager earth:

strmgcsv earth

Related commands
endmqcsv

End a command setver.
dspmqcsv

Display the status of a command server.

strmgm (Start queue manager)
Purpose

Use the strmgm command to start a local queue manager.

L)
A

rrst |— -2 J L@ﬁgrﬂameJ

Optional parameters

QMgrName

Specifies the name of a local queue manager to be started. If omitted, the default queue manager
is started.

Suppress error messages.

This flag is used within MQSeries to suppress unwanted error messages. Because using this flag
could result in loss of information, you should not use it when entering commands on a
command line.

Return codes

0 Queue manager started

3 Queue manager being created
5 Queue manager running

16 Queue manager does not exist
23 Log not available

49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name etror
100 Log location invalid
Examples

The following command starts the queue manager account:

strmgm account

Related commands
crtmgm

Create a queue manager
ditmgm

Delete a queue manager
endmgm

End a queue manager .

strmqtrc (Start MQSeries trace)

Purpose

Use the strmqtrc command to enable tracing. This command can be run whether tracing is enabled
or not. If tracing is already enabled, the trace options in effect are modified to those specified on the
latest invocation of the command.

p—strmakrc

l— -m EEH‘TEF‘NCFHEJ I— -g J l— -t TmceTypeJ

Optional parameters

-m

QMgrName

Is the name of the queue manager to be traced, ot is the literal value @SYSTEM used to trace
channels and the command server. If the -m flag is omitted, no tracing of queue managers or
@SYSTEM occurs. In particular, you cannot trace the default queue manager by omitting the -
m flag and queue manager name.

An -m flag and queue manager name can be specified on the same command as the -e flag. If
more than one trace specification applies to a given entity being traced, the actual trace includes
all of the specified options.

The queue manager, specified with the -m flag, does not have to be running or even to exist.
Consequently, it is possible to trace the creation or startup of a queue manager.

It is an error to omit the -m flag and queue manager name, unless the -e flag is specified.

If this flag is specified, early tracing is requested. This involves trace information being written,
before the processes know to which MQSeries component they belong. Any process, belonging
to any component of any queue manager, traces its early processing if this flag is specified. The
default, if this flag is not specified, is not to perform early tracing.

TraceType

Defines which points during processing can be traced. If this flag is omitted, all trace points are
enabled and a full trace generated.

Alternatively, one or more of the options in the following list can be supplied.

Note: If multiple trace types are supplied, each must have its own -t flag. Any number of -t flags

can be specified, as long as each has a valid trace type associated with it.

It is not an error to specify the same trace type on multiple -t flags.
all

Output data for every trace point in the system. This is also the default if the -t flag is not
specified.

api

Output data for trace points associated with the MQI and major queue manager components.
comms

Output data for trace points associated with data flowing over communications networks
csflows

Output data for trace points associated with processing flow in common services.
Igmflows

Output data for trace points associated with processing flow in the local queue manager.
remoteflows

Output data for trace points associated with processing flow in the communications component.
otherflows

Output data for trace points associated with processing flow in other components.
csdata

Output data for trace points associated with internal data buffers in common services
Igmdata

Output data for trace points associated with internal data buffers in the local queue manager
remotedata

Output data for trace points associated with internal data buffers in the communications
component.

otherdata

Output data for trace points associated with internal data buffers in other components.
versiondata

Output data for trace points associated with the version of MQSeries running.

commentary

Output data for trace points associated with comments in the MQSeries components.
Return codes
AMQ7024

This message is issued if arguments that are not valid are supplied to the command.
AMQ8304

The maximum number of nine concurrent traces is already running.
Examples

This command enables tracing of data from common services and the local queue manager, for a
queue manager called QM1.

strmgtrc -m QM1 -t csdata -t Igmdata

Related commands
dspmqtrc

Display formatted trace output
endmaqtrc

End MQSeries trace.

Part 3. Appendixes

Appendix A. MQSeries for IRIX at a glance

Part numbers
MQSeries for IRIX Version 2 Release 1, part number 98MS04221-01-001.
Machine requirements

MQSeries Servers:
Any SGI IRIX supported system

Minimum system disk space 20MB

MQSeries Clients:
Client code for IRIX, OS/2, DOS, and Windows 3.1 workstations is distributed with the
server code.

Client software provides a remote interface to a LAN server. Client software can reside at the server
- or at a file server - and be dynamically copied to the client for use, or it can reside on the client
disk-space.

Full details of all client operating environments are given in the MQSeries Clients book.

Software requirements

Minimum supported levels are shown. Later levels, if any, will be supported unless otherwise stated.
SGI IRIX version 6.2, 6.3, 6.4 or 6.5.

Connectivity

Network protocols supported are TCP/IP.

Any communications hardware supporting TCP/IP

Compilers supported for MQSeries applications
MIPSpro C or C++ compilers version 7.2.1 or later.
Micro Focus Object COBOL version 4.x or later.

Options

The following transaction processing monitor (coordination through X/Open XA interface) is

supported by MQSeries for IRIX:
BEA TUXEDO
Delivery
MQSeries for IRIX V2 is supplied on CD-ROM.
Installation

MQSeties for IRIX is installed with the “/ust/sbin/swmgt” program, and takes approximately 5
minutes to install.

Cyvictoam Aonfarilte
Y A \r’rl\ll INARLIZN Y V]UL\J". WA 1 CAWUIIE LW

The sample MQSC command file amgscoma. tst contains definitions for the MQSeries for IRIX
default and system objects. The default object definitions contain a complete set of attributes for
that object. When you create an object, its attributes are inherited from the default object, except the
ones you explicitly specify. The system objects are required for the operation of a queue manager or
channel. Figure 33 lists the objects defined in amgscoma. tst.

You should create these objects for each queue manager on a given node. To create these objects,

see "Running the supplied MQSC command files".

Figure 33. Obijects included in amgscoma.tst

Object name Description
SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.
SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.
SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.DEAD.LETTER.QUEUE Sample dead-letter (undelivered-message) queue.
SYSTEM.DEFAULT.PROCESS Default process definition.
SYSTEM.DEF.SENDER Default sender channel.
SYSTEM.DEF.SERVER Default server channel.
SYSTEM.DEF.RECEIVER Default receiver channel.
SYSTEM.DEF.REQUESTER Default requester channel.
SYSTEM.DEF.SVRCONN Default server connection channel.
SYSTEM.DEF.CLNTCONN Default client connection channel.
SYSTEM.CHANNEL.INITQ Channel initiation queue.
SYSTEM.CHANNEL.SYNCQ Channel synchronization queue.

SYSTEM.DEFAULT.INITIATION.QUEUE [Default initiation queue.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

SYSTEM.ADMIN.COMMAND.QUEUE

Administration command queue. Used for remote
MQSC commands, and PCF commands.

SYSTEM.MQSC.REPLY.QUEUE

IMQSC reply-to queue. This is a model queue that
creates a temporary dynamic queue for replies to
remote MQSC commands.

SYSTEM.ADMIN.QMGR.EVENT

Event queue for queue manager events.

SYSTEM.ADMIN.PERFM.EVENT

Event queue for performance events.

SYSTEM.ADMIN.CHANNEL. EVENT

Event queue for channel events.

Appendix C. Directory structure

Figure 34 shows the general layout of the data and log directories associated with a specific queue
manager. The directories shown apply to the default installation. If you change this, the locations of
the files and directories will be modified accordingly. For information about the location of the
product files, see Figure 3.

Figure 34. Default directory structure after a queue manager has been started

SURTIMG M —

— Mg .ank

— qmgrs/ —|:

— logd — qmna mu.'—l:

gqmname,

& SYSTEMY — arrarsf

amgalchk.fil

autn!
deas
Grrares
plugoamg!
prozdaty

GmAnager

gm.ini
E[FTETTECR- A
startporm!
aEem/
M

m&&m!

AMGERRDT LOG
— AR RRDE LLKE
L. ARMQERRDD LOG
OMANAGER

i aclase

= procdat! & clags

— Qmandager —[

— guedass

© Class
salf

& clags

— CAA DRI

CAMCAACIEI AT

shmem; — PeiQUELEY

SEEM)

O ipocs

arngh il

acineal

SEH00000 | O

SO0 L0

SO0N00E . LOG

— AMCCLCHL TAB

— AMCRFCDADAT

— AMOHEYNADAT

= E3SIm

EEEm

— mEem/!

— shmem’ — ParQUELUE!

- BRREMm/

In Figure 34, the layout is representative of MQSeries after a queue manager has been in use for
some time. The actual structure that you have depends on which operations have occurred on the

queue manager.

By default, the following directories and files located in the directory /var/mgm/qgmgrs/gmname/.

amgqalchk fil

Checkpoint file containing information about last checkpoint.

auth/

This directory contains subdirectories and files associated with authority.
@aclass

This file contains the authority stanzas for all classes.

procdef/

This directory contains a file for each process definition. Each file contains the authority stanzas
for the associated process definition.

@class
This file contains the authority stanzas for the process definition class.

gmanager/

@class

This file contains the authority stanzas for the queue manager class.
self

This file contains the authority stanzas for the queue manager object.
queues/

This directory contains a file for each queue. Each file contains the authority stanzas for the
associated queue.

@class

This file contains the authority stanzas for the queue class.
QAADMIN

File used internally for controlling authorizations.
dce/

Empty directory reserved for use by DCE support.
errors/

The operator message files; from newest to oldest.
AMQERRO1.LOG
AMQERRO02.LOG
AMQERRO03.LOG

plugcomp/
Empty directory reserved for use by installable services.
procdef/

Each MQSeries process definition is associated with a file in this directory. The file name
matches the process definition name--subject to certain restrictions, see "Understanding
MQSeries file names".

gmanager/

QMANAGER
The queue manager object.
QMQMOBICAT
The object catalogue containing the list of all MQSeries objects--used internally.
gm.ini
Queue manager configuration file.
queues/

Each queue has a directory in here containing a single file called 'q'.
The file name matches the queue name--subject to certain restrictions, see "Understanding
MQSeries file names".

startprm/

Directory containing temporary files used internally.
esem/

Directories containing files used internally.

isem/
msem/
shmem/

PerQUEUE/

Directory containing files used internally.
ssem/

Directory containing files used internally.
@ipcc/

AMQCLCHL.TAB
Client channel table file.

AMQRFCDA.DAT
Channel table file.
AMQRSYNA.DAT
Channel synchronization file.
esem/
Directories containing files used internally.

msem/
ssem/
isem/

shmem/

PerQUEUE/

Directory containing files used internally.

Queue manager log directory structure

By default, the following directories and files are found in /var/mgm/log/qgmname/.

The following subdirectories and files exist after you have installed MQSeries, created and started a
queue manager, and have been using that queue manager for some time.

amghlctl.Ifh
Log control file.
active/

This directory contains the log files, numbered as follows:
S0000000.LOG
S0000001.LOG
S0000002..LOG

... and so on.

Appendix D. Sample MQI programs and
MQSC files

MQSeries for IRIX provides a set of short sample MQI programs, and MQSC command files. You
can use these directly or modify them for experimental purposes.

MQSC command file samples

Figure 35 lists the MQSC command file samples. These are simply ASCII text files containing
MQSC commands. You can invoke the runMQSC command against each file in turn to create the

objects specified in the file. See "Running the supplied MQSC command files".

By default, these files are located in directory mgmtop/samp.

Figure 35. MQSC command files

File name Purpose

Amgscoma.tst [Contains definitions of the default and system objects. These are required. Any
object you define inherits attributes from the default objects except the attributes
that you specify. The system objects are support the operation of a queue
manager.

amqscos0.tst Creates a set of MQI objects for use with the C program samples.

Figure 30 lists the sample MQI source files. By default, the source files are located in directory
mgmtop/samp and the compiled versions in directory mgmtop/bin. To find out more about what
the programs do and how to use them, see the MQSeries Application Programming Guide manual.

Figure 36. Sample programs - source files

C Purpose

amqsbcg0.c Reads and then outputs both the message descriptor and message context fields of
all the messages on a specified queue.

amgqsecha.c Echoes a message from a message queue to the reply-to queue. Can be run as a
triggered application program.

amqsgbr0.c Writes messages from a queue to Stdout, leaving the messages on the queue. Uses

MQGET with the browse option.

amqsget0.c Removes the messages from the named queue (using MQGET) and writes them

to StdOut.

amqsinga.c Reads the triggered queue; each request read as a queue name; responds with
information about that queue.

amgqsput(.c Copies StdIn to a message and then puts this message on a specified queue.

amqsreq0.c Puts request messages on a specified queue and then displays the reply messages.

amgqsseta.c Inhibits puts on a named queue and responds with a statement of the result. Runs
as a triggered application.

amqstrg(.c A trigger monitor that reads a named initiation queue and then starts the program
associated with each trigger message. Provides a subset of the full triggering
function of the supplied runmqgtrm command.

amgqsvfcx.c A sample C skeleton of a Data Conversion exit routine.

Note: You can create the objects required by these samples using the MQSC command file
amqscosO. tst.

Miscellaneous tools

These tool files are provided to support the formatter and code conversion.

Figure 37. Miscellaneous files

File name

Location Purpose

amgqtre.fmt

Imq mtop/lib Defines MQSeries trace formats.

Appendix E. Support for different codesets
on MQSeries for IRIX

MQSeries for IRIX supports most of the codesets used by the locales - that is, the subsets of the

uset's environment which define the conventions for a specific culture - that are provided as
standard on MQSeries for IRIX.

Note that to install most of these locales on an MQSeries for IRIX system the Language
Supplement (LS) for the operating system must be installed. If the locale is not set, the value of the
LANG environment variable is used. If neither the locale nor LANG environment variable is set the
CCSID used is 819 - the ISO 8859-1 codeset.

The CCSID (Coded Character Set Identifier) used in MQSeries to identify the codeset used for the
message and message header data is obtained by analyzing the LC_CTYPE environment variable.

Figure 38 shows the locales and the CCSIDs that are registered for the codeset used by the locale.
Figure 38. Locales and CCSIDs

Locale Language codeset CCsSID
C English 1SO 8859-1 819
Da Danish I1SO 8859-1 819
Da_DK Danish 1SO 8859-1 819
Da_DK.850 Danish PC 850 850
Da_DK.865 Danish PC 865 865
De German 1SO 8859-1 819
De_DE German 1SO 8859-1 819
De_DE.437 German PC 437 437
De_DE.850 German PC 850 850
De_ AT German - Austria ISO 8859-1 319
De AT.437 German - Austria PC 437 437
De_AT.850 German - Austria PC 850 850

De CH German - Switzetland ISO 8859-1 319
De CH.437 German - Switzetland PC 437 437
De_CH.850 German - Switzerland PC 850 850
el Greek 1SO 8859-7 813
el_GR Greek I1SO 8859-7 813
en English - United Kingdom 1SO 8859-1 819
en_GB English - United Kingdom 1SO 8859-1 819
en_GB.437 English - United Kingdom PC 437 437
en_GB.850 English - United Kingdom PC 850 850
en_AU English - Australia 1SO 8859-1 819
en AU.437 English - Australia PC 437 437
en AU.850 English - Australia PC 850 350
en_CA English - Canada ISO 8859-1 819
en_CA.850 English - Canada PC 850 850
en CA.863 English - Canada PC 850 850
en_US English - USA ISO 8859-1 319
en_US.437 English - USA PC 437 437
en_US.850 English - USA PC 850 850
es Spanish 1SO 8859-1 819
es_ES Spanish 1SO 8859-1 819
es_HES.437 Spanish PC 437 437
es_ES.850 Spanish PC 850 850
fi Finnish 1SO 8859-1 819
fi_FI Finnish 1SO 8859-1 819
fi_F1.437 Finnish PC 437 437

fi_ F1.850 Finnish PC 850 850
fr French - France 1SO 8859-1 819
fr FR French - France ISO 8859-1 319
fr FR.437 French - France PC 437 437
fr FR.850 French - France PC 850 850
fr_ BE French - Belgium 1SO 8859-1 819
fr BE.437 French - Belgium PC 437 437
fr BE.850 French - Belgium PC 850 850
fr CA French - Canada ISO 8859-1 319
fr_ CA.850 French - Canada PC 850 850
fr CA.863 French - Canada PC 863 363
fr CH French - Switzerland ISO 8859-1 319
fr CH.437 French - Switzerland PC 437 437
fr CH.850 French - Switzerland PC 850 850
is Icelandic 1SO 8859-1 819
is_IS Icelandic ISO 8859-1 319
is_1S.850 [celandic PC 850 850
it [talian - Italy 1SO 8859-1 819
it_I'T [talian - Italy I1SO 8859-1 819
it_1T.437 [talian - Italy PC 437 437
it_1'T.850 [talian - Italy PC 850 850
it CH [talian - Switzerland 1SO 8859-1 819
it CH.437 Ttalian - Switzerland PC 437 437
it CH.850 [talian - Switzerland PC 850 850
nl Dutch - Netherlands 1SO 8859-1 819

nl NL [Dutch - Netherlands ISO 8859-1 319
nl_NI..437 Dutch - Netherlands PC 437 437
nl_NI1.850 [Dutch - Netherlands PC 850 350
nl_BE Dutch - Belgium 1SO 8859-1 819
nl_BE.437 Dutch - Belgium PC 437 437
nl_BE.850 Dutch - Belgium PC 850 850
no Norwegian 1SO 8859-1 819
no_NO Norwegian 1SO 8859-1 819
no_NO.850 Norwegian PC 850 850
no_NO.865 Norwegian PC 865 865
pl Polish 1SO 8859-2 912
pl_PL Polish I1SO 8859-2 912
POSIX English I1SO 8859-1 819
pt Portuguese 1SO 8859-1 819
pt_PT Portuguese I1SO 8859-1 819
pt_PT.850 Portuguese PC 850 850
pt_PT.860 Portuguese PC 860 860
ru Russian I1SO 8859-5 915
ru_SU Russian ISO 8859-5 915
sh Serbocroatian 1SO 8859-2 012
sh YU Serbocroatian ISO 8859-2 912
SV Swedish 1SO 8859-1 819
sv_SE Swedish 1SO 8859-1 819
sv_SE.437 Swedish PC 437 437
sv_SE.850 Swedish PC 850 850

For further information listing inter-platform support for these locales, see the MQSeries Distributed
Queuing Guide.

Appendix F. Stopping and removing gqueue
managers manually

If the normal methods for stopping and removing queue managers fail, you can resort to the more
drastic methods described here.

Stopping a queue manager manually

The normal method of stopping queue managers, using the endmgm command, should work even
in the event of failures within the queue manager. In exceptional circumstances, if this method of
stopping a queue manager fails, use the following procedure to stop it manually:

1. Find the process IDs of the queue manager programs that are still running. Use the MQSeries
for IRIX ps command. For example, if the queue manager is called QMNAME, the following
command can be used:

ps -ef | grep QMNAME

2. End the queue manager processes which are still running. Use the MQSeries for IRIX kill
command, together with the process IDs discovered in the previous step.

Note: Processes that fail to stop can be ended using ki Il -9.
End the processes in the following order:
amghasmx - logger
amgharmx - log formatter, used only if the queue manager has linear logging selected
amqzllp0 - checkpoint processor
amgqzlaa0 - queue manager agent(s)
amqzxmal - processing controller

Note: Manual ending of the queue manager may result in FFST's being taken, and the
production of FDC files in /var/mgm/errors. This should not be regarded as a defect
in the queue manager.

The queue manager should restart normally, even after being ended by use of the preceding method.

If you want to delete the queue manager after stopping it manually, use the dlitmgm command as
normal. If, for some reason, this command fails to delete the queue manager, the manual process

detailed in "Removing queue managers manually" can be used.

Removing queue managers manually

You should note that manual removal of a queue manager is potentially very disruptive, particularly

if multiple queue managers are being used on a single system. The reason is, that complete removal

of a queue manager requires deletion of files, shared memory and semaphores. As it is impossible to
identify which shared memory and semaphores belong to a particular queue manager, it is necessary
to stop all running queue managers.

If you need to delete a queue manager manually, use the following procedure:

1.

Stop all queue managers running on the machine from which you need to remove the queue
manager.

Locate the queue manager directory from the configuration file /var/mgm/mgs. ini and
look for the QueueManager stanza naming the queue manager to be deleted.

Its Prefix and Directory attributes identify the queue manager directory. For a Prefix
attribute of <Prefix> and a Directory attribute of <Directory>, the full path to the queue
manager directory is:

<Prefix>/qmgrs/<Ditectory>

Locate the queue manager log directory from the qm.ini configuration file in the queue
manager directory. The LogPath attribute of the Log stanza identifies this directory.

Delete the queue manager directory, all subdirectories and files.
Delete the queue manager log directory, all subdirectories and files.

Remove the queue manager's QueueManager stanza from the /var/mgm/mgs. ini
configuration file.

If the queue manager being deleted is also the default queue manager, remove the
DefaultQueueManager stanza from the /var/mgm/mgs. ini configuration file.

Either, remove all shared memory and semaphores owned by the mgm user ID and mgm
group, or restart the machine. Shared resources can be identified using the ipcs command
and can be removed with the ipcrm command.

Appendix G. Messages

This appendix describes the format of the messages issued by MQSeries and how they are
documented.

Message format

The format of the MQSeries messages is as follows:
The message identifier, where the identifier has two components:
1. The characters "AMQ", which identify the message as originating from MQSeries
2. A four-digit decimal code.

Text of the message

Structure of messages

This section describes the structure of MQSeries messages.

Message variables

Some messages display text or numbers that vary according to the circumstances giving rise to the
message; these are known as "message variables". The message variables are indicated by the use of
the '&' symbol.

Where there is more than one variable in a message, a number is added to the '&' symbol.

Note: You should always look at the extended help for a message before carrying out any other
action, because, in certain cases, the variables are only displayed in the extended help.

Message information
For each message, this information is provided:
Explanation:
Why the message was issued.
User action:
Instructions to the user.

Note: The message file may contain the explanation of the message, in addition to the message
itself.

MQSeries messages

MQSeries messages are numbered 5000 through 9999, and they are listed in this book in numeric
order. However, not all numbers have been used, and therefore, the list is not continuous.

Message groups
MQSeries messages are grouped according to the part of MQSeries from which they originate:
5000 through 5999

Installable services - see topic "Installable services messages".

6000 through 6999
Common services - see topic "Common services messages".

7000 through 7999

The MQSeries product - see topic "MQSeries product messages".

8000 through 8999

Administering MQSeries - see topic "Administration messages".
9000 through 9999

Remote - see topic "Remote messages".

Installable services messages
AMQ5006 Unexpected error: rc = &1

Explanation: An unexpected error occutred in an internal function of the product.
User action: Save the generated output files and contact your Willow Technology support centet.

AMQ5501 There was not enough storage to satisfy the request

Explanation: An internal function of the product attempted to obtain storage, but there was none
available.

User action: Stop the product and restart it. If this does not resolve the problem, save the
generated output files and contact your Willow Technology support center.

AMQ5511 Installable service component '&3' returned '&4".

Explanation: The internal function, that adds a component to a setvice, called the component
initialization process. This process returned an error.

User action: Check the component was installed correctly. If it was, and the component was
supplied by Willow Technology, then save the generated output files and contact your Willow
Technology support center. If the component was not supplied by Willow Technology, save the
generated output files and follow the support procedure for that component.

AMQ5512 Installable service component *&3' returned '&4’ for queue manager name =
'&5".

Explanation: An installable service component returned an unexpected return code.

User action: Check the component was installed correctly. If it was, and the component was
supplied by Willow Technology, then save the generated output files and contact your Willow
Technology support center. If the component was not supplied by Willow Technology, save the
generated output files and follow the support procedure for that component.

AMQ5513 '&3’ returned &1.
Explanation: An unexpected error occurred.
User action: Save the generated output files and contact your Willow Technology support centet.

AMQ5600 Usage: crtmgm [-z] [-q] [-c Text] [-d DefXmitQ] [-h MaxHandles]
AMQ5603 Usage: dlitmgm [-z] QMgrName

AMQ5604 Usage: dspmqgaut [-m QMgrName] [-n ObjName] -t ObjType [-p Principal | -g
Group] [-s ServiceName]

AMQ5605 Usage: endmgm [-z] [-c | -i | -p] @MgrName

AMQ5606 Usage: setmgaut -m QMgrName [-n ObjName] -t ObjType [-p Principal | -g
Group] [-s ServiceName] Authorizations

AMQ5607 Usage: strmgm [-z] [QMgrName]
AMQ5608 Usage: dspmqgtrn QMgrName

AMQ5609 Usage: rsvmaqtrn -m QMgrName (-c | -b) Transaction,Number
Explanation:

User action: None.

AMQ5610 Usage: strmgtrc [-m QMgrName] [-e] [-t TraceType]
AMQ5611 Usage: endmqtrc [-m QMgrName] [-e] [-a]
AMQ5612 Usage: dspmqtrc [-t TemplateFile] InputFileName

Common services messages

AMQ6004 An error occurred during MQSeries initialization or ending.

Explanation: An error was detected during initialization or ending of MQSeties. The MQSeries
error recording routine has been called.

User action: Use the standard facilities supplied with your system to record the problem identifiert,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6025 Program not found.
Explanation: MQSeries is unable to start program &3 because it was not found.
User action: Check the program name is correctly specified and rerun the program.

AMQ6026 A resource shortage prevented the creation of an MQSeries process.

Explanation: An attempt to create an MQSeries process was rejected by the operating system due
to a process limit (either the number of processes for each user or the total number of processes
running system wide), or because the system does not have the resources necessary to create another
process.

User action: Investigate if a process limit is preventing the creation of the process and if so why the
system is constrained in this way. Consider raising this limit or reducing the workload on the system.

AMQ6035 MQSeries failed, no storage available.

Explanation: An internal function of the product attempted to obtain storage, but there was none
available.

User action: Stop the product and restart it. If this does not resolve the problem, save the
generated output files and contact your Willow Technology support center.

AMQ6037 MQSeries was unable to obtain enough storage.

Explanation: The product is unable to obtain enough storage. The product's etror recording
routine may have been called.

User action: Stop the product and restart it. If this does not resolve the problem see if a problem
has been recorded. If a problem has been recorded, use the standard facilities supplied with your
system to record the problem identifier, and to save the generated output files. Contact your Willow
Technology support center. Do not discard these files until the problem has been resolved.

AMQG6047 Conversion not supported.

Explanation: MQSeries is unable to convert string data tagged in CCSID &1 to data in CCSID &2.
User action: Check the appropriate National Language Support publications to see if the CCSIDs
are supported by your system.

AMQ6048 DBCS error

Explanation: MQSeries is unable to convert string data due to a DBCS error. Conversion is from
CCSID &1 to CCSID &2.

User action: Check the appropriate National Language Support publications to see if the CCSIDs
are supported by your system.

AMQ6049 DBCS only string not valid.
Explanation: MQSeries is unable to convert string data in CCSID &1 to data in CCSID &2.
Message descriptor data must be in single byte form. CCSID &2 is a DBCS only CCSID.

User action: Check the CCSID of your job or system and change it to one supporting SBCS or
mixed character sets. Refer to the appropriate National Language Support publications for character
sets and CCSIDs supported.

AMQ6050 CCSID error.

Explanation: MQSeries is unable to convert string data in CCSID &1 to data in CCSID &2.
User action: Check the appropriate National Language Support publications to see if the CCSIDs
are supported by your system.

AMQG6051 Conversion length error.

Explanation: MQSeries is unable to convert string data in CCSID &1 to data in CCSID &2, due to
an input length error.

User action:

AMQG6052 Conversion length error.
Explanation: MQSeries is unable to convert string data in CCSID &1 to data in CCSID &2.
User action:

AMQ6053 CCSID error

Explanation: MQSeries is unable to convert string data in CCSID &1 to data in CCSID &2.
User action: One of the CCSIDs is not supported by the system. Check the appropriate National
Language Support publications to see if the CCSIDs are supported by your system.

AMQ6064 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the MQSeries etror recording routine has been
called.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6090 MQSeries was unable to display an error message.

Explanation: MQSeries has attempted to display the message associated with return code &6. The
return code indicates that there is no message text associated with the message. Associated with the
request are inserts &1 : &2 : &3 : &4 : &b5.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQG6091 An internal MQSeries error has occurred.

Explanation: Private memory has detected an error, and is abending due to &3. The etror data is
&1.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6100 An internal MQSeries error has occurred.

Explanation: MQSeries has detected an error, and is abending due to &3. The error data is &1.
User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6107 CCSID not supported.

Explanation: MQSeries is unable to convert string data in CCSID &1 to data in CCSID &2,
because one of the CCSIDs is not recognized.

User action: Check the appropriate National Language Support publications to see if the CCSIDs
are supported by your system.

AMQ6115 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the MQSeties error recording routine has been
called.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6118 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the MQSeties error recording routine has been
called.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6119 An internal MQSeries error has occurred.

Explanation: MQSeries detected an unexpected error when calling the operating system. The
MQSeries error recording routine has been called.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6120 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the MQSeries error recording routine has been
called.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6121 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the MQSeries error recording routine has been
called.

User action: MQSeries has detected a parameter count of &1 that is not valid. Use the standard
facilities supplied with your system to record the problem identifier, and to save the generated
output files. Contact your Willow Technology support center. Do not discard these files until the
problem has been resolved.

AMQ6122 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the MQSeries error recording routine has been
called.

User action: MQSeries has detected parameter &1 that is not valid, having value &2&3. Use the
standard facilities supplied with your system to record the problem identifier, and to save the
generated output files. Contact your Willow Technology support center. Do not discard these files
until the problem has been resolved.

AMQ6125 An internal MQSeries error has occurred.

Explanation: An internal error has occurred with identifier &1. This message is issued in
association with other messages.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6148 An internal MQSeries error has occurred.

Explanation: MQSeries has detected an etror, and is abending due to &3. The error data is &1.
User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ6172 No codeset found for current locale.

Explanation: No codeset could be determined for the current locale. Check that the locale in use is
supported.

User action: None.

AMQ6173 No CCSID found for codeset &3.

Explanation: Codeset &3. has no supported CCSID. Check that the locale in use is supported.
CCSIDs can be added by updating the file /var/mqm/conv/table/ccsid.tbl.

User action: None.

AMQG6708 A disk full condition was encountered when formatting a new log file in location
&3.

Explanation: The queue manager attempted to format a new log file in directory &3. The drive or
file system containing this directory did not have sufficient free space to contain the new log file.
User action: Increase the amount of space available for log files and retry the request.

AMQ6710 Queue manager unable to access directory &3.

Explanation: The queue manager was unable to access directory &3 for the log. This could be
because the directory does not exist, or because the queue manager does not have sufficient
authority.

User action: Ensure that the directory exists and that the queue manager has authority to read and
write to it. Ensure that the LogPath attribute in the queue managet's configuration file matches the
intended log path.

AMQG6767 Log file &3 could not be opened for use.

Explanation: Log file &3 could not be opened for use. Possible reasons include the file being
missing, the queue manager being denied permission to open the file or the contents of the file
being incorrect.

User action: If the log file was required to start the queue manager, ensure that the log file exists
and that the queue manager is able to read from and write to it. If the log file was required to
recreate an object from its media image and you do not have a copy of the required log file, delete
the object instead of recreating it.

MQSeries product messages

AMQ7001 The location specified for creation of the queue manager is not valid.
Explanation: The directory under which queue managers ate to be created is not valid. It may not
exist, or there may be a problem with authorization.

User action: The location is specified in the machine-wide ini file. Correct the file and submit the
request again.

AMQ?7002 An error occurred manipulating a file.

Explanation: An internal error occurred while trying to create or delete a queue manager file. It is
likely that the error was caused by there being insufficient space on a disk, or by problems with
authorization to the underlying filesystem.

User action: Identify the file that caused the etror, using problem determination techniques.
Correct the error in the filesystem and submit the request again.

AMQ7005 The queue manager is running.

Explanation: You tried to perform an action that requires the queue manager stopped, however, it
is currently running. You probably tried to delete or start a queue manager that is currently running.
User action: If the queue manager should be stopped, stop the queue manager and submit the
failed command again.

AMQ7006 Missing attribute &5 on stanza starting on line &1 of ini file &3.

Explanation: The &4 stanza starting on line &1 of configuration file &3 is missing the required &5
attribute.

User action: Check the contents of the file and retry the operation.

AMQ?7008 The queue manager already exists.

Explanation: You tried to create a queue manager that already exists.

User action: If you specified the wrong queue manager name, correct the name and submit the
request again.

AMQ7010 The queue manager does not exist.

Explanation: You tried to perform an action against a queue manager that does not exist. You may
have specified the wrong queue manager name.

User action: If you specified the wrong name, correct it and submit the command again. If the
queue manager should exist, create it, and then submit the command again.

AMQ7012 The specified trigger interval is not valid.

Explanation: You specified a value for the trigger interval that is not valid. The value must be not
less than zero and not greater than 999 999 999.

User action: Correct the value and resubmit the request.

AMQ7013 There is an error in the name of the specified dead letter queue.
Explanation: You specified a name for the dead letter queue that is not valid.
User action: Correct the name and resubmit the request.

AMQ7014 There is an error in the name of the specified default transmission queue.
Explanation: You specified a name for the default transmission queue that is not valid.
User action: Correct the name and submit the command again.

AMQ7015 There is an error in the maximum number of open object handles specified.
Explanation: You specified a value for the maximum number of open object handles to be allowed
that is not valid. The value must be not less than zero and not greater than 999 999 999.

User action: Correct the value and submit the command again.

AMQ7016 There is an error in the maximum number of uncommitted messages specified.
Explanation: You specified a value for the maximum number of uncommitted messages to be
allowed that is not valid. The value must be not less than 1 and not greater than 999 999 999.
User action: Correct the value and submit the command again.

AMQ7017 Log not available.

Explanation: The queue manager was unable to use the log. This could be due to a log file being
missing or damaged, or the log path to the queue manager being inaccessible.

User action: Ensure that the LogPath attribute in the queue manager configuration file is correct. If
a log file is missing or otherwise unusable, restore a backup copy of the file, or the entire queue
managet.

AMQ7018 The queue manager has stopped

AMQ7019 An error occurred while creating the directory structure for the new queue
manager.

Explanation: During creation of the queue manager an error occurred while trying to create a file
or directory.

User action: Identify why the queue manager files cannot be created. It is probable that there is
insufficient space on the specified disk, or that there is a problem with access control. Correct the
problem and submit the command again.

AMQ7021 An error occurred while deleting the directory structure for the queue manager.
Explanation: While deleting the queue manager, an error occurred deleting a file or directory. The
queue manager may not have been completely deleted.

User action: Follow problem determination procedures to identify the file or directory and to
complete deletion of the queue manager.

AMQ7024 Arguments supplied to a command are not valid.

Explanation: You supplied arguments to a command that it could not interpret. It is probable that
you specified a flag not accepted by the command, or that you included extra flags.

User action: Correct the command and submit it again.

AMQ7025 Error in the supplied command description.
Explanation: The descriptive text you supplied on the command was in error.
User action: Correct the descriptive text and submit the command again.

AMQ7026 A principal or group name was invalid.
Explanation: You specified the name of a principal or group which does not exist.
User action: Correct the name and resubmit the request.

AMQ7028 The queue manager is not available for use.

Explanation: You have requested an action that requires the queue manager running, however, the
queue manager is not currently running.

User action: Start the required queue manager and submit the command again.

AMQ7030 Request to quiesce the queue manager accepted. The queue manager will stop
when there is no further work for it to perform.

Explanation: You have requested that the queue manager end when there is no more work for it.
In the meantime, it will refuse new applications that attempt to start, although it allows those already
running to complete their work.

User action: None.

AMQ7031 The queue manager is stopping.

Explanation: You issued a command that requires the queue manager running, however, it is
currently in the process of stopping. The command cannot be run.

User action: None

AMQ7041 Obiject already exists.

Explanation: A Define Object operation was performed, but the name selected for the object is
already in use by an object that is unknown to MQSeries. The object name selected by MQSeries
was &3, in directory &4, of object type &5.

User action: Remove the conflicting object from the MQSeries system, then try the operation
again.

AMQ?7042 Media image not available for object &3 of type &4.

Explanation: The media image for object &3, type &4, is not available for media recovery. A log
file containing part of the media image cannot be accessed.

User action: A previous message indicates which log file could not be accessed. Restore a copy of
the log file and all subsequent log files from backup. If this is not possible, you must delete the
object instead.

AMQ7044 Media recovery not allowed.

Explanation: Media recovery is not possible on a queue manager using a circular log. Damaged
objects must be deleted on such a queue manager.

User action: None.

AMQT7047 An unexpected error was encountered by a command.
Explanation: An internal error occurred during the processing of a command.
User action: Follow problem determination procedures to identify the cause of the error.

AMQ7048 The queue manager name is either not valid or not known

Explanation: Either the specified queue manager name does not conform to the rules required by
MQSeries or the queue manager does not exist. The rules for naming MQSeries objects are detailed
in the MQSeries Command Reference.

User action: Correct the name and submit the command again.

AMQ7053 The transaction has been committed.
Explanation: The prepared transaction has been committed.
User action: None.

AMQ7054 The transaction has been backed out.
Explanation: The prepared transaction has been backed out.
User action: None.

AMQ7055 The transaction number is not recognized.

Explanation: The number of the transaction you supplied was not recognized as belonging to an
in-doubt transaction.

User action: Ensure that you entered a valid transaction number. It is possible that the transaction
number you entered corresponds to a transaction which was committed or backed out before you
issued the command to resolve it.

AMQ7056 Transaction number &1,&2.

Explanation: This message is used to report the number of an in-doubt transaction.
User action: None.

AMQ7064 Log path not valid or inaccessible.

Explanation: The supplied log path could not be used by the queue manager. Possible reasons for
this include the path not existing, the queue manager not being able to write to the path, or the path
residing on a remote device.

User action: Ensure that the log path exists and that the queue manager has authority to read and
write to it. If the queue manager already exists, ensure that the LogPath attribute in the queue
manager's configuration file matches the intended log path.

AMQ7065 Insufficient space on disk.

Explanation: The operation cannot be completed due to shortage of disk space.

User action: Either make more disk space available, or reduce the disk requirements of the
command you issued.

AMQ7066 There are no prepared transactions.
Explanation: There are no prepared transactions to be resolved.
User action: None.

AMQ?7068 Authority file contains an authority stanza that is not valid.
Explanation: A syntax error has been found in one of the files containing authotization
information for the queue manager.

User action: Correct the contents of the incorrect authorization file by editing it.

AMQ7069 The queue manager was created successfully, but cannot be made the default.
Explanation: The queue manager was defined to be the default queue manager for the machine
when it was created. However, although the queue manager has been created, an error occurred
trying to make it the default. There may not be a default queue manager defined for the machine at
present.

User action: There is probably a problem with the machine-wide ini file. Verify the existence of the
file, its access permissions, and its contents. If its backup file exists, reconcile the contents of the
two files and then delete the backup. Finally, either update the machine-wide ini file by hand to
specify the desired default queue manager, or delete and recreate the queue manager.

AMQ7073 Log size not valid.

Explanation: Either the number of log files or the size of the log files was outside the accepted
values.

User action: Make sure that the log parameters you enter lie within the valid range.

AMQ7074 Unknown stanza key &4 on line &1 of ini file &3.
Explanation: Line &1 of the configuration file &3 contained a stanza called &3. This stanza is not
recognized.

User action: Check the contents of the file and retry the operation.

AMQ7075 Unknown attribute &4 on line &1 of ini file &3.

Explanation: Line &1 of the configuration file &3 contained an attribute called &4 that is not valid.
This attribute is not recognized in this context.

User action: Check the contents of the file and retry the operation.

AMQ7076 Value &5 not valid for attribute &4 on line &1 of ini file &3

Explanation: Line &1 of the configuration file &3 contained value &5 that is not valid for the
attribute &4.

User action: Check the contents of the file and retry the operation.

AMQ7077 You are not authorized to perform the requested operation.

Explanation: You tried to issue a command for the queue manager. You are not authorized to
perform the command.

User action: Contact your system administrator to perform the command for you. Alternatively,
request authority to perform the command from your system administrator.

AMQ7080 No objects processed.

Explanation: No objects were processed, either because no objects matched the criteria given, or
because the objects found did not require processing.

User action: None.

AMQ7081 Object &3, type &4 recreated.
Explanation: The object &3, type &4 was recreated from its media image.
User action: None.

AMQ7082 Object &3, type &4 is not damaged.
Explanation: Object &3, type &4 cannot be recreated since it is not damaged.
User action: None

AMQ7083 A resource problem was encountered by a command.

Explanation: The command failed due to a resource problem. Possible causes include the log being
full or the command running out of memory.

User action: Look at the previous messages to diagnose the problem. Rectify the problem and retry
the operation.

AMQ7084 Object &3, type &4 damaged.

Explanation: The object &3, type &4 was damaged. The object must be deleted of, if the queue
manager supports media recovery, recreated from its media image.

User action: Delete the object or recreate it from its media image.

AMQ7085 Object &3, type &4 not found.
Explanation: Object &3, type &4 cannot be found.
User action: None.

AMQ7086 Media image for object &3, type &4 recorded.
Explanation: The media image for object &3, type &4 has been recorded.
User action: None.

AMQ7087 Object &3, type &4 is a temporary object

Explanation: Object &3, type &4 is a temporary object. Media recovery operations ate not
permitted on temporary objects.

User action: None.

AMQ7088 Object &3, type &4 in use.

Explanation: Object &3, type &4 is in use. Either an application has it open or, if it is a local queue,
there are uncommitted messages on it.

User action: Ensure that the object is not opened by any applications, and that there are no
uncommitted messages on the object, if it is a local queue. Then, retry the operation.

AMQ7089 Media recovery already in progress.

Explanation: Another media recovery operation is already in progress. Only one media recovery
operation is permitted at a time.

User action: Wait for the existing media recovery operation to complete and retry the operation.

AMQ7090 The queue manager CCSID is not valid.

Explanation: The CCSID to be used by the QMGR is not valid, probably because it is a DBCS
CCSID.

User action: None.

AMQ7091 You are performing authorization for the queue manager, but you specified an
object name.

Explanation: Modification of authorizations for a queue manager can be performed only from that
queue manager. You must not specify an object name.

User action: Correct the command and submit it again.

AMQ?7092 An object name is required but you did not specify one.
Explanation: The command needs the name of an object, but you did not specify one.
User action: Correct the command and submit it again.

AMQ7093 An object type is required but you did not specify one.
Explanation: The command needs the type of the object, but you did not specify one.
User action: Correct the command and submit it again.

AMQ7094 You specified an object type that is not valid, or more than one object type.
Explanation: Either the type of object you specified was not valid, or you specified multiple object
types on a command which supports only one.

User action: Correct the command and submit it again.

AMQ7095 An entity name is required but you did not specify one.

Explanation: The command needs one or more entity names, but you did not specify any. Entities
can be principals or groups.

User action: Correct the command and submit it again.

AMQ?7096 An authorization specification is required but you did not provide one.
Explanation: The command sets the authorizations on MQSeties objects. However you did not
specify which authorizations are to be set.

User action: Correct the command and submit it again.

AMQ?7097 You gave an authorization specification that is not valid.

Explanation: The authorization specification you provided to the command contained one or more
items that could not be interpreted.

User action: Correct the command and submit it again.

AMQ?7098 The command accepts only one entity name. You specified more than one.
Explanation: The command can accept only one principal or group name. You specified more than
one.

User action: Correct the command and submit it again.

AMQ7099 Entity &3 has the following authorizations for object &4:
Explanation: Informational message. The list of authotizations follows.
User action: None.

AMQ?7305 Trigger message could not be put on an initiation queue.

Explanation: The attempt to put a trigger message on queue &4 on queue manager &5 failed with
reason code &1. The message will be put on the dead-letter queue.

User action: Ensure that the initiation queue is available, and operational.

AMQ7306 The dead-letter queue must be a local queue.

Explanation: An undelivered message has not been put on the dead-letter queue &4 on queue
manager &5, because the queue is not a local queue. The message will be discarded.

User action: Inform your system administrator.

AMQ7307 A message could not be put on the dead-letter queue.

Explanation: The attempt to put a message on the undelivered-message queue &4 on queue
manager &5 failed with reason code &1. The message will be discarded.

User action: Ensure that the undelivered-message queue is available, and operational.

AMQ7308 Trigger condition &1 was not satisfied.

Explanation: At least one of the conditions required for generating a trigger message was not
satisfied, so a trigger message was not generated. If you were expecting a trigger message, consult the
MQSeries Application Programming Guide for a list of the conditions required. (Note that arranging
for condition &1 to be satisfied might not be sufficient because the conditions are checked in an
arbitrary order, and checking stops when the first unsatisfied condition is discovered.)

User action: If a trigger message is required, ensure that all the conditions for generating one are
satisfied.

AMQ7310 Report message could not be put on a reply-to queue.

Explanation: The attempt to put a report message on queue &4 on queue manager &5 failed with
reason code &1. The message will be put on the undelivered-message queue.

User action: Ensure that the reply-to queue is available, and operational.

AMQ7463 The log for queue manager &3 is full.

Explanation: This message is issued when an attempt to write a log record is rejected because the
log is full. The queue manager will attempt to resolve the problem.

User action: This situation may be encountered during a period of unusually high message traffic.
However, if you persistently fill the log, you may have to consider enlarging the size of the log. You
can either increase the number of log files by changing the values in the queue manager
configuration file. You will then have to stop and restart the queue manager. Alternatively, if you

need to make the log files themselves bigger, you will have to delete and recreate the queue manager.

AMQ7464 The log for queue manager &3 is no longer full.

Explanation: This message is issued when a log was previously full, but an attempt to write a log
record has now been accepted. The log full situation has been resolved.

User action: None

AMQ7465 The log for queue manager &3 is full. This is due to the presence of a long-
running transaction.

Explanation: This message is issued when an attempt made to resolve a log full situation fails,
because the space is occupied by a long-running transaction.

User action: Try to ensure that the duration of your transactions is not excessive. Commit or roll
back any old transactions to release log space for further log records.

AMQ7466 The log for queue manager &3 is too small to support the current data rate.
Explanation: This message is issued when the monitoring tasks maintaining the log cannot keep up
with the current rate of data being written.

User action: The number of primary log files configured should be increased to prevent possible
log full situations.

AMQ7467 The oldest log file required to start queue manager &3 is &4.

Explanation: The log file &4 contains the oldest log record required to restart the queue manager.
Log records older than this may be required for media recovery.

User action: You can move log files older than &4 to an archive medium to release space in the log
directory. If you move any of the log files required to recreate objects from their media images, you
will have to restore them to recreate the objects.

AMQ7468 The oldest log file required to perform media recovery of queue manager &3 is
&4.

Explanation: The log file &4 contains the oldest log record requited to recreate any of the objects
from their media images. Any log files prior to this will not be accessed by media recovery
operations.

User action: You can move log files older than &4 to an archive medium to release space in the log
directory.

AMQ7469 Transactions rolled back to release log space.

Explanation: The log space for the queue manager is becoming full. One or more long-running
transactions have been rolled back to release log space so that the queue manager can continue to
process requests.

User action: Try to ensure that the duration of your transactions is not excessive. You may consider
increasing the size of the log to allow transactions to last longer before the log starts to become full.

AMQ7472 Object &3, type &4 damaged.

Explanation: Object &3, type &4 has been marked as damaged. This indicates that the queue
manager was either unable to access the object in the file system, or that some kind of inconsistency
with the data in the object was detected.

User action: If a damaged object is detected, the action performed depends on whether the queue
manager supports media recovery and when the damage was detected. If the queue manager does
not support media recovery, you must delete the object as no recovery is possible. If the queue

manager does support media recovery and the damage is detected during the processing performed
when the queue manager is being started, the queue manager will automatically initiate media
recovery of the object. If the queue manager supports media recovery and the damage is detected
once the queue manager has started, it may be recovered from a media image using the rcrmqob;j
command or it may be deleted.

AMQ7901 The data-conversion exit &3 has not loaded.

Explanation: The data-conversion exit program, &3, failed to load. The internal function gave
exception &4.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ7902 The data conversion exit &3 was not loaded. The operating system call &4
returned &1.

Explanation:

User action: Specify REPLACE to over-write the existing file, or choose a different output file
name.

AMQ7903 The data-conversion exit &3 cannot be found.

Explanation: Message data conversion has been requested for an MQSeties message with a uset-
defined format, but the necessary data-conversion exit program, &3, cannot be found. The internal
function gave exception &4.

User action: Check that the necessaty data-conversion exit &3 exists.

AMQ7904 The data conversion exit &3 cannot be found, or loaded.

Explanation: Message data conversion was requested for an MQSeries message with a user-defined
format, but the necessary data conversion exit program, &3, was not found, or loaded. The &4
function call gave a return code of &1.

User action: Check that the necessary data conversion exit routine exists one of the standard
directories for dynamically loaded modules. If necessary, inspect the generated output to examine
the message descriptor (MQMD structure) of the MQSeries message for which conversion was
requested. This may help you to determine where the message originated.

AMQ7905 Unexpected exception &4 in data-conversion exit.

Explanation: The data-conversion exit program, &3, ended with an unexpected exception &4. The
message has not been converted.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ7907 Unexpected exception in data-conversion exit.

Explanation: The data-conversion exit routine, &3, ended with an unexpected exception. The
message has not been converted.

User action: Correct the error in the data-conversion exit routine.

AMQ7921 An internal MQSeries error occurred.
Explanation: The MQDXP structure passed to the Internal Formats Conversion routine contains
an incorrect eyecatcher field.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Contact your Willow Technology support center. Do not
discard these files until the problem has been resolved.

AMQ7922 A PCF message is incomplete.

Explanation: Message data conversion cannot convert a message in Programmable Command
Format (PCF) because the message is only &1 bytes long and does not contain a PCF header. The
message has either been truncated, or it contains data that is not valid.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7923 A message had an unrecognized integer encoding.

Explanation: Message data conversion cannot convert a message because the integer encoding
value of the message, &1, was not recognized.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7924 Bad length in the PCF header (length = &1).

Explanation: Message data conversion cannot convert a message in Programmable Command
Format (PCF) because the PCF header structure contains an incorrect length field. Either the
message has been truncated, or it contains data that is not valid.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7925 Message version &1 is not supported.

Explanation: Message data conversion cannot convert a message because the Version field of the
message contains an incorrect value.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7926 A PCF message has an incorrect parameter count value &1.

Explanation: Message data conversion cannot convert a message in Programmable Command
Format (PCF) because the parameter count field of the PCF header is incorrect.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7927 Bad type in PCF structure number &1 (type = &2).
Explanation: A Programmable Command Format (PCF) structute passed to the Internal Formats
Converter contained an incorrect type field.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7928 Bad length in PCF structure number &1 (length = &2).

Explanation: A Programmable Command Format (PCF) structure passed to the Internal Formats
Converter contained an incorrect length field.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7929 A PCF structure is incomplete.

Explanation: Message data conversion cannot convert a message in Programmable Command
Format (PCF) because structure number &1, of Type value &2, within the message is incomplete.
The message has either been truncated, or it contains data that is not valid.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7930 Bad CCSID in PCF structure number &1 (CCSID = &2).

Explanation: A Programmable Command Format (PCF) structure passed to the Internal Formats
Converter contains an incorrect CCSID.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7931 Bad length in PCF structure number &1 (length = &2).

Explanation: Message data conversion cannot convert a message in Programmable Command
Format (PCF) because one of the structures of the message contains an incorrect length field.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ?7932 Bad count in PCF structure number &1 (count = &2).

Explanation: Message data conversion cannot convert a message in Programmable Command
Format (PCF) because a StringList structure of the message contains an incorrect count field.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor, the headers of the message, and the
incorrect structure to determine the source of the message, and to see how data that is not valid
became included in the message.

AMQ7933 Bad string length in PCF structure.

Explanation: Message data conversion cannot convert a message in Programmable Command

Format (PCF) because structure number &1 of the message contains an incorrect string length value
&2.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor, the headers of the message, and the
incorrect structure to determine the source of the message and to see how data that is not valid
became included in the message.

AMQ7934 Wrong combination of MQCCSI_DEFAULT with MQCCSI_EMBEDDED.
Explanation: Message data conversion could not convert a message in Programmable Command
Format (PCF) because structure &1 of the message contained a CodedCharSetld field of
MQCCSI_DEFAULT while the message itself had a CodedCharSetld of MQCCSI_EMBEDDED.
This is an incorrect combination.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor, the headers of the message and the
incorrect structure to determine the source of the message and to see how data that is not valid
became included in the message.

AMQ7935 Bad CCSID in message header (CCSID = &1).

Explanation: Message data conversion could not convert a message because the Message
Descriptor of the message contained an incorrect CodedCharSetld field.

User action: Use the standard facilities supplied with your system to record the problem identifier,
and to save the generated output files. Do not discard these files until the problem has been
resolved. Use the file containing the Message Descriptor of the message to determine the source of
the message and to see how data that is not valid became included in the message.

AMQ7936 The file &3 already exists.
Explanation: The output file already exists, but REPLACE has not been specified.
User action: Specify REPLACE to over-write the existing file, or select a different output file name.

AMQ7943 Usage: crtmqcvx SourceFile TargetFile

AMQ7953 One structure has been parsed.
Explanation: The crtmqevx command has parsed one structure.

User action: None.

AMQ7954 &1 structures have been parsed.

Explanation: The crtmqcvx command has parsed %1 structures.
User action: None.

AMQ7955 Unexpected field: &1.
Explanation: The field within the structure is of a type that is not recognized.
User action: Correct the field and retry the command.

AMQ7956 Bad array dimension.
Explanation: An array field of the structure has an incotrect dimension value.

User action: Correct the field and retry the command.

AMQ7957 Warning at line &1.

Explanation: The structure contains another field after a variable length field.
User action: Cotrect the structure and retry the command.

AMQ7958 Error at line &1 in field &3.

Explanation: Field name '&3' is a field of type 'float'. Fields of type float are not supported by this
command.

User action: Either correct the structure to eliminate fields of type float, ot write your own routine
to support conversion of these fields.

AMQ7959 Error at line &1 in field &3.

Explanation: Field name '&3' is a field of type 'double'. Fields of type double are not supported by
this command.

User action: Either correct the structure to eliminate fields of type double, ot write your own
routine to support conversion of these fields.

AMQ7960 Error at line &1 in field &3.

Explanation: Field name '&3' is a 'pointer’ field. Fields of type pointer are not supported by this
command.

User action: Either correct the structure to eliminate fields of type pointer, ot write your own
routine to support conversion of these fields.

AMQ7961 Error at line &1 in field &3.

Explanation: Field name '&3' is a 'bit' field. Bit fields are not supported by this command.
User action: Either correct the structure to eliminate bit fields, or write your own routine to
support conversion of these fields.

AMQ7962 No input file specified.
Explanation: This command requires that an input file is specified.
User action: Specify the name of the input file and retry the command.

AMQ?7963 No output file specified.
Explanation: This command requires that an output file name is specified.
User action: Specify the name of the output file and retry the command.

AMQ7964 Unexpected option &3.
Explanation: The option specified is not valid for this command.
User action: Retry the command with a valid option.

AMQ7965 Incorrect number of arguments.
Explanation: The command was passed an incorrect number of arguments.
User action: Retry the command, passing it the correct number of arguments.

AMQ7968 Cannot open file '&3".
Explanation: You cannot open the file &3.
User action: Check that you have the correct authorization to the file and retry the command.

AMQ7969 Syntax error.
Explanation: This line of the input file contains a language syntax error.
User action: Correct the syntax error and retry the command.

AMQ7970 Syntax error on line &1.

Explanation: This message identifies where, in the input file, a previously reported error was
detected.

User action: Correct the error and retry the command.

Administration messages

AMQ8001 MQSeries queue manager created.
Explanation: MQSeries queue manager &5 created.
User action: None.

AMQB8002 MQSeries queue manager deleted.
Explanation: MQSeries queue manager &5 deleted.
User action: None.

AMQB8003 MQSeries queue manager started.
Explanation: MQSeties queue manager &5 started.
User action: None.

AMQB8004 MQSeries queue manager ended.
Explanation: MQSeries queue manager &5 ended.
User action: None.

AMQB8005 MQSeries queue manager changed.
Explanation: MQSeries queue manager &5 changed.
User action: None.

AMQ8006 MQSeries queue created.
Explanation: MQSeries queue &5 created.
User action: None.

AMQB8007 MQSeries queue deleted.
Explanation: MQSeries queue &5 deleted.
User action: None.

AMQB8008 MQSeries queue changed.
Explanation: MQSeries queue &5 changed.
User action: None.

AMQB8010 MQSeries process created.
Explanation: MQSeries process &5 created.
User action: None.

AMQB8011 MQSeries process deleted.
Explanation: MQSeries process &5 deleted.
User action: None.

AMQ8012 MQSeries process changed.
Explanation: MQSeries process &5 changed.
User action: None.

AMQ8013 MQM process copied.
Explanation: MQM process &5 created in library &3 by copying.
User action: None.

AMQ8014 MQSeries channel created.
Explanation: MQSeries channel &5 created.
User action: None.

AMQB8015 MQSeries channel deleted.
Explanation: MQSeries channel &5 deleted.
User action: None.

AMQB8016 MQSeries channel changed.
Explanation: MQSeries channel &5 changed.
User action: None.

AMQ8018 Start MQSeries channel accepted.

Explanation: MQSeries channel &5 is being started. The start channel function has been initiated.
This involves a series of operations across the network before the channel is actually started. The
channel status displays "BINDING" for a short period while communication protocols are
negotiated with the channel with whom communication is being initiated.

User action: None.

AMQB8019 Stop MQSeries channel accepted.
Explanation: MQSeries channel &5 has been requested to stop.
User action: None.

AMQB8020 Ping MQSeries channel complete.
Explanation: Ping MQSeries channel &5 complete.
User action: None.

AMQ8021 MQSeries Listener program started.
Explanation: The MQSeries channel listener program has been started.
User action: None.

AMQB8022 MQSeries queue cleared.
Explanation: All messages on MQSeties queue &5 have been deleted.
User action: None.

AMQ8023 MQSeries channel reset.
Explanation: MQSeries channel &5 has been reset.
User action: None.

AMQB8024 MQSeries channel initiator started.
Explanation: The channel initiator for MQSeries queue &5 has been started.
User action: None.

AMQ8025 MQSeries channel resolved.
Explanation: In doubt messages for MQSeries channel &5 have been resolved.
User action: None.

AMQ8026 End MQSeries queue manager accepted.
Explanation: A controlled stop request has been initiated for MQSeries queue manager &5.
User action: None.

AMQ8027 MQSeries command server started.
Explanation: The MQSeries command server has been started.
User action: None.

AMQB8028 MQSeries command server ended.
Explanation: The MQSeries command setver has been stopped.
User action: None.

AMQB8029 MQSeries authority granted.
Explanation: Authority for MQSeries object &5 granted.
User action: None.

AMQ8030 MQSeries authority revoked.
Explanation: Authority for MQSeries object &5 revoked.
User action: None.

AMQB8033 MQSeries object recreated.
Explanation: MQSeries object &5 has been recreated from image.
User action: None.

AMQB8034 MQSeries object image recorded.
Explanation: Image of MQSeries object &5 has been recorded.
User action: None.

AMQB8035 MQSeries Command Server Status . . : Running

AMQ8036 MQSeries command server status . . : Stopping

AMQ8037 MQSeries command server status . . : Starting

AMQ8038 MQSeries command server status . . : Running with queue disabled
AMQ8039 MQSeries command server status . . : Stopped

AMQ8040 MQSeries command server ending.

AMQB8041 The queue manager cannot be restarted because processes, that were previously
connected, are still running.

Explanation: Processes, that were connected to the queue manager the last time it was running, are
still active. The queue manager cannot be restarted.

User action: Stop the processes and try to start the queue manager.

AMQB8042 Process &1 is still running.

AMQB8043 Non runtime application attempted to connect to runtime only queue manager.
Explanation: A non runtime application attempted to connect to a queue manager on a node where
support for non runtime applications has not been installed. The connect attempt will be rejected
with a reason of MQRC_ENVIRONMENT_ERROR.

User action: If the node is intended to support only runtime applications then investigate why a
non runtime application has attempted to connect to the queue manager. If the node is intended to
support non runtime only applications then investigate if the base option has been installed. The

base option must be installed if non runtime applications are to run on this node.

AMQB8101 Unexpected error (&1).

Explanation: An unexpected reason code with hexadecimal value &4 was received from the
MQSeries queue manager during command processing. (Note that hexadecimal values in the range
X'07D1'-X'0BB7' correspond to MQI reason codes 2001-2999.) More information might be
available in the log. If the reason code value indicates that the error was associated with a particular
parameter, the parameter concerned is &2.

User action: Correct the error and then try the command again.

AMQB8102 MQSeries object name specified in &2 not valid.

Explanation: MQSeries object name &5 specified in &2 is not valid. The length of the name must
not exceed 48 characters, or 20 characters if it is a channel name. The name should contain the
following characters only: lowercase a-z, uppercase A-Z, numeric 0-9, petiod (.), forwatd slash (/),
underscore (_) and percent sign (%).

User action: Change the length of the parameter value or change the parameter value to contain a
valid combination of characters, then try the command again.

AMQB8103 Insufficient storage available.
Explanation: There was insufficient storage available to perform the requested operation.
User action: Free some storage and then try the command again.

AMQ8104 MQSeries directory &3 not found.

Explanation: Directory &3 was not found. This directory is created when MQSeries is installed
successfully. Refer to the log for more information.

User action: Verify that installation of MQSeries was successful. Correct the error and then try the
command again.

AMQB8105 Obiject error.
Explanation: An object error occurred. Refer to the log for more information.
User action: Correct the error and then try the command again.

AMQB8106 MQSeries queue manager being created.
Explanation: The MQSeries queue manager is being created.
User action: Wait for the creation process to complete and then try the command again.

AMQB8107 MQSeries queue manager running.
Explanation: The MQSeries queue manager is running.
User action: None.

AMQ8108 MQSeries queue manager ending.
Explanation: The MQSeries queue manager is ending.
User action: Wait for the MQSeries queue manager to end and then try the command again.

AMQB8109 MQSeries queue manager being deleted.
Explanation: The MQSeries queue manager is being deleted.
User action: Wait for the deletion process to complete.

AMQ8110 MQSeries queue manager already exists.
Explanation: MQSeries queue manager &5 already exists.

User action: None.

AMQB8117 MQSeries queue manager deletion incomplete.

Explanation: Deletion of MQSeties queue manager &5 was only partially successful. An object was
not found, or could not be deleted. Refer to the log for more information.

User action: Delete any remaining MQSeries queue manager objects.

AMQB8118 MQSeries queue manager does not exist.

Explanation: MQSeries queue manager &5 does not exist.

User action: Create the message queue manager (crttmgm command) and then try the command
again.

AMQB8135 Not authorized.

Explanation: You are not authorized to perform the requested operation for the MQSeries object
&5 specified in &2. Either you are not authorized to perform the requested operation, or you are
not authorized to the specified MQSeries object. For a copy command, you may not be authorized
to the specified source MQSeries object, or, for a create command, you may not be authorized to
the system default MQQSeries object of the specified type.

User action: Obtain the necessary authority from your security officer or MQSeries administrator.
Then try the command again.

AMQB8137 MQSeries queue manager already starting.

Explanation: The strmgm command was unsuccessful because MQSeries queue manager &5 is
already starting.

User action: Wait for the strmgm command to complete.

AMQB8138 The MQSeries queue has an incorrect type.
Explanation: The operation is not valid with MQSeries queue &5 because it is not a local queue.
User action: Change the QNAME parameter to specify an MQSeries queue of the correct type.

AMQB8139 Already connected.

Explanation: A connection to the MQSeties queue manager already exists.
User action: None.

AMQB8140 Resource timeout error.

Explanation: A timeout occurred in the communication between internal MQSeries queue manager
components. This is most likely to occur when the system is heavily loaded.

User action: Wait until the system is less heavily loaded, then try the command again.

AMQB8141 MQSeries queue manager starting.

Explanation: MQSeries queue manager &5 is starting.

User action: Wait for the MQSeries queue manager startup process to complete and then try the
command again.

AMQB8142 MQSeries queue manager stopped.

Explanation: MQSeries queue manager &5 is stopped.

User action: Use the strmgm command to start the MQSeries queue manager, and then try the
command again.

AMQB8143 MQSeries queue not empty.

Explanation: MQSeries queue &5 specified in &2 is not empty or contains uncommitted updates.
User action: Commit or rollback any uncommitted updates. If the command is DELETE
QLOCAL, use the CLEAR QLOCAL command to clear the messages from the MQSeries queue.
Then try the command again.

AMQ8144 Log not available.

Explanation: The MQSeries logging resource is not available.

User action: Use the dltmgm command to delete the MQSeties queue manager and then the
crtmgm command to create the MQSeries queue manager. Then try the command again.

AMQB8145 Connection broken.

Explanation: The connection to the MQSeries queue manager failed during command processing.
This may be caused by an endmgm -i command being issued by another user, or by an MQSeries
queue manager error.

User action: Use the strmgm command to start the message queue manager, wait until the message
queue manager has started, and try the command again.

AMQB8146 MQSeries queue manager not available.

Explanation: The MQSeries queue manager is not available because it has been stopped or has not
been created.

User action: Use the crtmgm command to create the message queue manager, ot the strmqm
command to start the message queue manager as necessary. Then try the command again.

AMQB8147 MQSeries object not found.

Explanation: If the command entered was Change, the MQSeries object &5 specified in &2 does
not exist. If the command entered was Copy, the source MQSeries object does not exist. If the
command entered was Create, the system default MQSeries object of the specified type does not
exist.

User action: Correct the MQSeries object name and then try the command again or, if you are
creating a new MQSeries queue or process object, either specify all parameters explicitly or ensure
that the system default object of the required type exists. The system default queue names are
SYSTEM.DEFAULT.LOCAL.QUEUE, SYSTEM.DEFAULT.ALIAS.QUEUE and
SYSTEM.DEFAULT.REMOTE.QUEUE. The system default process name is
SYSTEM.DEFAULT.PROCESS.

AMQB8148 MQSeries object in use.

Explanation: MQSeries object &5 specified in &2 is in use by an MQSeries application program.
User action: Wait until the MQSeries object is no longer in use and then try the command again, or
specify FORCE to force the processing of the MQSeries ALTER command regardless of any
application program affected by the change. If the object is the dead-letter queue and the open input
count is nonzero, it may be in use by an MQSeries channel. If the object is another MQSeries queue
object with a nonzero open output count, it may be in use by an MQSeries channel (of type RCVR
or RQSTR). In either case, use the STOP CHANNEL and START CHANNEL commands to stop
and restart the channel in order to solve the problem.

AMQB8149 MQSeries object damaged.

Explanation: The MQSeries object &5 specified in &2 is damaged.

User action: The MQSeties object contents are not valid. Issue the DISPLAY CHANNEL,
DISPLAY QUEUE, or DISPLAY PROCESS command, as required, to determine the name of the

damaged object. Issue the DEFINE command, for the appropriate object type, to replace the
damaged object, then try the command again.

AMQ8150 MQSeries object already exists.

Explanation: MQSeries object &5 specified for &2 could not be created because it already exists.
User action: Check that the name is correct and try the command again specifying REPLACE, or
delete the MQSeries object. Then try the command again.

AMQB8151 MQSeries object has different type.

Explanation: The type specified for MQSeries object &S5 is different from the type of the object
being altered or defined.

User action: Use the correct MQSeries command for the object type, and then try the command
again.

AMQB8152 Source MQSeries object has different type.

Explanation: The type of the source MQSeties object is different from that specified.

User action: Correct the name of the command, or source MQSeries object name, and then try the
command again, or try the command using the REPLACE option.

AMQB8153 Insufficient disk space for the specified queue.

Explanation: The command failed because there was insufficient disk space available for the
specified queue.

User action: Release some disk space and then try the command again.

AMQ8155 Connection limit exceeded.

Explanation: The queue manager connection limit has been exceeded.

User action: The maximum limit on the number of MQSeties application programs that may be
connected to the MQSeries queue manager has been exceeded. Try the command later.

AMQB8156 MQSeries queue manager quiescing.

Explanation: The MQSeries queue manager is quiescing.

User action: The queue manager was stopping with -c specified for endmgm. Wait until the queue
manager has been restarted and then try the command again.

AMQ8157 Security error.

Explanation: An error was reported by the security manager program.

User action: Inform your systems administrator, wait until the problem has been corrected, and
then try the command again.

AMQ8159 MAXDEPTH not allowed with queue type *ALS or *RMT.

Explanation: The MAXDEPTH parameter may not be specified for an MQM queue of type *ALS
or *RMT.

User action: Remove the MAXDEPTH parameter from the command of, if the command is
CRTMQMQ, specify a different value for QTYPE. Then try the command again.

AMQB8160 DFTSHARE not allowed with queue type *ALS or *RMT.

Explanation: The DFTSHARE parameter may not be specified for an MQM queue of type *ALS
or *RMT.

User action: Remove the DFTSHARE parameter from the command of, if the command is
CRTMQMQ, specify a different value for QTYPE. Then try the command again.

AMQB8172 Already disconnected.

Explanation: The MQI reason code of 2018 was returned from the MQSeties queue manager in
response to an MQDISC request issued during command processing.

User action: None.

AMQB8173 No processes to display.
Explanation: There are no matching processes defined on this system.
User action: Using the DEFINE PROCESS command to create a process.

AMQ8174 No queues to display.

Explanation: There are no matching queues defined on this system.

User action: Using the appropriate command to define a queue of the type that you require, that is,
DEFINE QALIAS, DEFINE QLOCAL, DEFINE QMODEL, or DEFINE QREMOTE.

AMQB8185 Operating system object already exists.

Explanation: The MQSeries object cannot be created because an object that is not known to
MQSeries already exists in the MQSeries directory with the name that should be used for the new
object. Refer to the log for previous messages.

User action: Remove the non-MQSeries object from the MQSeries library, and try the command
again.

AMQB8186 Image not available for MQSeries object &5.

Explanation: MQSeries object &5 type &3 cannot be recreated because the image is not fully
available in the logs that are currently online. Refer to eatlier messages in the error log for
information about the error logs that need to be brought online for this object to be recreated.
User action: Bring the relevant error logs online, and try the command again.

AMQB8187 MQSeries object &5 is currently open.

Explanation: MQSeries object &5, type &3, is cutrently in use, so the &1 command cannot be
issued against it. If a generic list was presented to the command, the command is still issued against
the other objects in the list.

User action: Wait until the object is no longer in use, and try the command again.

AMQB8188 Insufficient authorization to MQSeries object &5.

Explanation: You are not authotized to issue the &1 command against MQSeries object &5 type
&3. If a generic list was presented to the command, the command is still issued against the other
objects in the list.

User action: Obtain sufficient authorization for the object, and retry the command.

AMQB8189 MQSeries object &5 is damaged.

Explanation: MQSeries object &5 type &3 is damaged and the &1 command cannot be issued
against it. If a generic list was presented to the command then the command is still issued against the
other objects in the list.

User action: Issue the appropriate DEFINE command for the object, specifying REPLACE, and
then try the command again.

AMQB8190 &1 succeeded on &2 objects and failed on &3 objects.
Explanation: An operation performed on a generic list of objects was not completely successful.
User action: Examine the log for details of the errors encountered, and take appropriate action.

AMQB8191 MQSeries command server is starting.
Explanation: The MQSeties command setver is starting.
User action: Wait for the strmqesv command to complete and then try the operation again.

AMQB8192 MQSeries command server already starting.

Explanation: The request to start the MQSeries command server was unsuccessful because the
MQSeries command server is already starting.

User action: Wait for the strmqcsv command to complete.

AMQB8193 MQSeries command server is ending.
Explanation: The MQSeries command setver is ending.
User action: Wait for the endmqcsv command to complete and then try the command again.

AMQB8194 MQSeries command server already ending.

Explanation: The end MQSeries command server request was unsuccessful because the MQSeries
command server is already ending.

User action: Wait for the endmqcsv command to complete.

AMQ8195 MQSeries command server already running.

Explanation: The strmqcsv command was unsuccessful because the MQSeties command server is
already running.

User action: None.

AMQB8196 MQSeries command server already stopped.

Explanation: The request to end the MQSeries command server was unsuccessful because the
MQSeries command server is already stopped.

User action: None.

AMQB8197 Deleted MQSeries queue damaged.

Explanation: The deleted MQSeties queue &5 was damaged, and any messages it contained have
been lost.

User action: None.

AMQ8226 MQSeries channel already exists.

Explanation: MQSeries channel &3 cannot be created because it already exists.

User action: Check that the name is correct and try the command again specifying REPLACE, or
delete the MQSeries channel and then try the command again.

AMQ8227 Channel &3 not found.
Explanation: ALTER CHANNEL has been issued for a non-existent channel.
User action: Correct the MQSeries channel name and then try the command again.

AMQ8296 &4 MQSC commands completed successfully.

Explanation: The &1 command has completed successfully. The &4 MQSeries commands from
&5 have been processed without error and a report written to the printer spool file.

User action: None.

AMQ8297 &4 MQSC commands verified successfully.
Explanation: The &1 command completed successfully. The &4 MQSeries commands from &5
have been verified and a report written to the printer spool file.

User action: None.

AMQB8298 Error report generated for MQSC command process.

Explanation: The &1 command attempted to process the sequence of MQSeries commands from
&5 and encountered some errors, however, the operation may have partially completed. A report
has been written to the printer spool file.

User action: Examine the spooled printer file for details of the errors encountered, correct the
MQSC source file, and retry the operation.

AMQ8299 Cannot open &5 for MQSC process.

Explanation: The &1 command failed to open &5 for MQSeties command processing.
User action: Check that the intended file exists, and has been specified correctly. Correct the
specification or create the object, and try the operation again.

AMQB8302 Internal failure initializing MQSeries services.
Explanation: An error occurred while attempting to initialize MQSeries services.
User action:

AMQ8303 Insufficient storage available to process request.
Explanation:
User action:

AMQB8304 Tracing cannot be started. Too many traces are already running.
Explanation:
User action: Stop one or more of the other traces and try the command again.

AMQB8305 Tracing cannot be started. Too many traces are already running.
Explanation:
User action: Stop one or more of the other traces and try the command again.

AMQB8401 &1 MQSC commands read.
Explanation: The MQSC script contains &1 commands.
User action: None.

AMQ8402 &1 commands have a syntax error.
Explanation: The MQSC script contains &1 commands having a syntax errot.
User action: None.

AMQ8403 &1 commands cannot be processed.
Explanation: The MQSC script contains &1 commands that failed to process.
User action: None.

AMQ8404 Command failed.
Explanation: An MQSC command has been recognized, but cannot be processed.
User action: None.

AMQB8405 Syntax error detected at or near end of command segment below:-
Explanation: The MQSC script contains &1 commands having a syntax errot.
User action: None.

AMQB8406 Unexpected 'end of input’ in MQSC.

Explanation: An MQSC command contains a continuation character, but the 'end of input' has
been reached without completing the command.
User action: None.

AMQB8407 Display Process details.

Explanation: The MQSC DISPLAY PROCESS command completed successfully, and details
follow this message.

User action: None.

AMQB8408 Display Queue Manager details.

Explanation: The MQSC DISPLAY QMGR command completed successfully, and details follow
this message.

User action: None.

AMQB8409 Display Queue details.

Explanation: The MQSC DISPLAY QUEUE command completed successfully, and details follow
this message.

User action: None.

AMQ8410 Parser Error.
Explanation: The MQSC Parser has an internal error.
User action: None.

AMQ8411 Duplicate Keyword Error.
Explanation: A command in the MQSC script contains duplicate keywords.
User action: None.

AMQ8412 Numeric Range Error.
Explanation: The value assigned to an MQSC command keyword is out of the permitted range.
User action: None.

AMQ8413 String Length Error.

Explanation: A string assigned to an MQSC keyword is either NULL, or longer than the maximum
permitted for that keyword.

User action: None.

AMQB8414 Display Channel details.

Explanation: The MQSC DISPLAY CHL command completed successfully, and details follow this
message.

User action: None.

AMQ8415 MQSeries commands are active.

Explanation: The MQSC DISPLAY QMGR command completed successfully, and details follow
this message.

User action: None.

AMQB8416 MQSC timed out waiting for a response from the command server.
Explanation: MQSC did not receive a response message from the remote command setver in the
time specified.

User action: None.

AMQB8417 Display Channel Status details.

Explanation: The MQSC DISPLAY CHANNEL STATUS command completed successfully, and
details follow this message.

User action: None.

AMQB8418 &1 command responses received.

Explanation: Running in queued mode, &1 command responses were received from the remote
command server.

User action: None.

AMQB8419 The Queue is already in the DCE cell.
Explanation: The Queue is already in the cell, that is, its SCOPE attribute is already CELL.
User action: None.

AMQB8421 A required keyword was not specified.
Explanation: A keyword required in this command was not specified.
User action: None.

AMQ8498 Starting MQSeries Commands.
Explanation: The MQSC script contains &1 commands.
User action: None.

AMQ8499 Usage: runmgsc [-e] [-v] [-w WaitTime] [-x] QMgrName
Explanation: None.
User action: None.

AMQ8500 MQSeries Display MQ Files
Explanation: Title for the dspmqfls command.
User action: None.

AMQ8501 Common services initialization failed with return code &1.

Explanation: A request by the command server to initialize common services failed with return
code &1.

User action: None.

AMQB8502 Connect shared memory failed with return code &1.

Explanation: A request by the command setver to connect shared memory failed with return code
&l1.

User action: None.

AMQB8503 Post event semaphore failed with return code &1.

Explanation: A request by the command server to post an event semaphore failed with return code
&1.

User action: None.

AMQ8504 Command server MQINQ failed with reason code &1.

Explanation: An MQINQ request by the command server, for the MQSeries queue &3, failed with
reason code &1.

User action: None.

AMQB8505 Reallocate memory failed with return code &1.
Explanation: A request by the command server to reallocate memory failed with return code &1.
User action: None.

AMQ8506 Command server MQGET failed with reason code &1.

Explanation: An MQGET request by the command server, for the MQSeries queue &3, failed with
reason code &1.

User action: None.

AMQ8507 Command server MQPUT1 request for an undelivered message failed with
reason code &1.
Explanation: An attempt by the command setver to put a message to the dead-letter queue, using

MQPUT1, failed with reason code &1. The MQDLH reason code was &2.
User action: None.

AMQB8508 Queue Manager Delete Object List failed with return code &1.

Explanation: A request by the command setver to delete a queue manager object list failed with
return code &1.

User action: None.

AMQ8509 Command server MQCLOSE reply-to queue failed with reason code &1.
Explanation: An MQCLOSE request by the command setver for the reply-to queue failed with
reason code &1.

User action: None.

AMQB8511 Usage: strmqgcsv QMgrName
Explanation:
User action:

AMQB8512 Usage: endmqcsv [-c | -i] QMgrName
AMQB8513 Usage: dspmgcsv QMgrName

AMQ8514 No response received after &1 seconds.

Explanation: The command server has not reported the status of running, to the start request,
before the timeout of &1 seconds was reached.

User action: None.

AMQ8601 MQSeries trigger monitor started.
Explanation: The MQSeries trigger monitor has been started.
User action: None.

AMQB8602 MQSeries trigger monitor ended.
Explanation: The MQSeries trigger monitor has ended.
User action: None.

AMQB8603 Usage: runmgtrm [-m QMgrName] [-g InitQ]

AMQB8604 Use of MQSeries trigger monitor not authorized.
Explanation: The MQSeries trigger monitor cannot be run due to lack of authority to the requested
queue manager or initiation queue.

User action: Obtain the necessary authority from your security officer or MQSeties administrator.
Then try the command again.

AMQ8605 Queue manager not available to the MQSeries trigger monitor

Explanation: The queue manager specified for the trigger monitor does not exist, ot is not active.
User action: Check that you named the correct queue manager. Ask your systems administrator to
start it, if it is not active. Then try the command again.

AMQB8606 Insufficient storage available for the MQSeries trigger monitor.
Explanation: There was insufficient storage available for the MQSeries trigger monitor to run.
User action: Free some storage and then try the command again.

AMQ8607 MQSeries trigger monitor connection failed.

Explanation: The trigger monitot's connection to the requested queue manager failed because of
MQI reason code &1 from MQCONN.

User action: Consult your systems administrator about the state of the queue manager.

AMQ8608 MQSeries trigger monitor connection broken.

Explanation: The connection to the queue manager failed while the trigger monitor was running.
This may be caused by an endmgm command being issued by another user, or by an MQSeries
queue manager errof.

User action: Consult your systems administrator about the state of the queue managet.

AMQB8609 Initiation queue missing or wrong type

Explanation: The named initiation queue could not be found; or the queue type is not correct for
an initiation queue.

User action: Check that the named queue exists, and is a local queue, or that the named queue is an
alias for a local queue which exists.

AMQB8610 Initiation queue in use

Explanation: The MQSeries trigger monitor could not open the initiation queue because the queue
is open for exclusive use by another application.

User action: Wait until the queue is no longer in use, and try the command again.

AMQB8611 Initiation queue could not be opened.

Explanation: The MQSeries trigger monitor could not open the initiation queue; reason code &1
was returned from MQOPEN.

User action: Consult your systems administrator.

AMQB8612 Waiting for a trigger message

Explanation: The MQSeries trigger monitor is waiting for a message to arrive on the initiation
queue.

User action: None.

AMQB8613 Initiation queue changed or deleted

Explanation: The MQSeries trigger monitor is unable to continue because the initiation queue has
been deleted or changed since it was opened.

User action: Retry the command.

AMQB8614 Initiation queue not enabled for input.

Explanation: The MQSeries trigger monitor cannot read from the initiation queue because input is
not enabled.
User action: Ask your systems administrator to enable the queue for input.

AMQB8615 MQSeries trigger monitor failed to get message.

Explanation: The MQSeries trigger monitor failed because of MQI reason code &1 from
MQGET.

User action: Consult your systems administrator.

AMQB8616 End of application trigger.
Explanation: The action to trigger an application has been completed.
User action: None.

AMQB8617 Not a valid trigger message.
Explanation: The MQSeries trigger monitor received a message that is not recognized as
User action: Consult your systems administratort.

AMQB8618 Error starting triggered application.

Explanation: An error was detected when trying to start the application identified in a trigger
message.

User action: Check that the application the trigger monitor was trying to start is available.

AMQB8619 Application type &1 not supported.

Explanation: A trigger message was received which specifies application type &1; the trigger
monitor does not support this type.

User action: Use an alternative trigger monitor for this initiation queue.

AMQ8620 Trigger message with warning &1

Explanation: The trigger monitor received a message with a warning. For example, it may have
been truncated or it could not be converted to the trigger monitot's data representation. The reason
code for the warning is &1.

User action: None.

AMQ8621 Usage: runmgtmc [-m QMgrName] [-g InitQ]

AMQB8701 Usage: rcdmgimg [-z] [-m QMgrName] -t ObjType [GenericObjName]
AMQB8702 Usage: rcrmqgobj [-z] [-m QMgrName] -t ObjType [GenericObjName]
AMQB8703 Usage: dspmgfls [-m QMgrName] [-t ObjType] GenericObjName

AMQA8708 Dead letter queue handler started to process INPUTQ(&3).

Explanation: The dead letter queue handler (runmqdlq) has been started and has parsed the input
file without detecting any errors and is about to start processing the queue identified in the message.
User action: None.

AMQB8709 Dead letter queue handler ending.

Explanation: The dead letter queue handler (runmqdlq) is ending because the WAIT interval has
expired and there are no messages on the dead letter queue, or because the queue manager is
shutting down, or because the dead letter queue handler has detected an error. If the dead letter
queue handler has detected an error, an eatlier message will have identified the error.

User action: None.

AMQB8721 Dead letter queue message not prefixed by a valid MQDLH.

Explanation: The dead letter queue handler (runmqdlq) retrieved a message from the nominated
dead letter queue, but the message was not prefixed by a recognizeable MQDLH. This typically
occurs because an application is writing directly to the dead letter queue but is not prefixing
messages with a valid MQDLH. The message is left on the dead letter queue and the dead letter
queue handler continues to process the dead letter queue. Each time the dead letter queue handler
repositions itself to a position before this message to process messages that could not be processed
on a previous scan it will reprocess the failing message and will consequently reissue this message.
User action: Remove the invalid message from the dead letter queue. Do not write messages to the
dead letter queue unless they have been prefixed by a valid MQDLH. If you require a dead letter
queue handler that can process messages not prefixed by a valid MQDLH, you must change the
sample program called amgsdlq to cater for your needs.

AMQB8722 Dead letter queue handler unable to put message: Rule &1 Reason &2.
Explanation: This message is produced by the dead letter queue handler when it is requested to
redirect a message to another queue but is unable to do so. If the reason that the redirect fails is the
same as the reason the message was put to the dead letter queue then it is assumed that no new error
has occured and no message is produced. The retry count for the message will be incremented and
the dead letter queue handler will continue.

User action: Investigate why the dead letter queue handler was unable to put the message to the
dead letter queue. The line number of the rule used to determine the action for the message should
be used to help identify to which queue the dead letter queue handler attempted to PUT the
message.

AMQB8741 Unable to connect to queue manager(&3) : CompCode = &1 Reason = &2.
Explanation: The dead letter queue handler (runmqdlq) could not connect to the requested queue
manager. This message is typically issued when the requested queue manager has not been started or
is quiescing, or if the process does not have sufficient authority. The completion code and the
reason can be used to identify the error. The dead letter queue handler ends.

User action: Take appropriate action based upon the completion code and reason.

AMQB8742 Unable to open queue manager: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) could not open the queue manager object.
This message is typically issued because of a resource shortage or because the process does not have
sufficient authority. The completion code and the reason can be used to identify the error. The dead
letter queue handler ends.

User action: Take appropriate action based upon the completion code and reason.

AMQB8743 Unable to inquire on queue manager: CompCode = &1 Reason = &2.
Explanation: The dead letter queue handler (runmqdlq) could not inquire on the queue manager.
This message is typically issued because of a resource shortage or because the queue manager is
ending. The completion code and the reason can be used to identify the error. The dead letter queue
handler ends.

User action: Take appropriate action based upon the completion code and reason.

AMQB8744 Unable to close queue manager: CompCode = &1 Reason = &2.
Explanation: The dead letter queue handler (runmqdlq) could not close the queue manager. This

message is typically issued because of a resource shortage or because the queue manager is ending.
The completion code and the reason can be used to identify the error. The dead letter queue handler
ends.

User action: Take appropriate action based upon the completion code and reason.

AMQB8745 Unable to open dead letter queue(&3) for browse: CompCode = &1 Reason = &2.
Explanation: The dead letter queue handler (runmqdlq) could not open the dead letter queue for
browsing. This message is typically issued because another process has opened the dead letter queue
for exclusive access, or becuase an invalid dead letter queue name was specified. Other possible
reasons include resource shortages or insufficient authority. The completion code and the reason
can be used to identify the error. The dead letter queue handler ends.

User action: Take appropriate action based upon the completion code and reason.

AMQB8746 Unable to close dead letter queue: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) could not close the dead letter queue. This
message is typically issued because of a resource shortage or because the queue manager is ending.
The completion code and the reason can be used to identify the error. The dead letter queue handler
ends.

User action: Take appropriate action based upon the completion code and reason.

AMQB8747 Integer parameter(&2) outside permissable range for &3 on line &1.
Explanation: An integer supplied as input to the dead letter handler was outside of the valid range
of values for a particular keyword.

User action: Correct the input data and restart the dead letter queue handler.

AMQB8748 Unable to get message from dead letter queue: CompCode = &1 Reason = &2.
Explanation: The dead letter queue handler (runmqdlq) could not get the next message from the
dead letter queue. This message is typically issued because of the queue manager ending, a resource
problem, or another process having deleted the dead letter queue. The completion code and the
reason can be used to identify the error. The dead letter queue handler ends.

User action: Take appropriate action based upon the completion code and reason.

AMQB8749 Unable to commit/backout action on dead letter queue: CompCode = &1 Reason
Explanation: The dead letter queue handler (runmqdlq) was unable to commit or backout an
update to the dead letter queue. This message is typically issued because of the queue manager
ending, or because of a resource shortage. If the queue manager has ended, the update to the dead
letter queue (and any associated updates) will be backed out when the queue manager restarts. If the
problem was due to a resource problem then the updates will be backed out when the dead letter
queue handler terminates. The completion code and the reason can be used to identify the error.
The dead letter queue handler ends.

User action: Take appropriate action based upon the completion code and reason.

AMQA8750 No valid input provided to runmqdlg.

Explanation: Either no input was provided to runmqdlq, or the input to runmqdlq contained no
valid message templates. If input was provided to runmqdlq but was found to be invalid, eatlier
messages will have been produced explaining the cause of the error. The dead letter queue handler
will ends.

User action: Correct the input data and restart the dead letter queue handler.

AMQA8751 Unable to obtain private storage.

Explanation: The dead letter queue handler (runmqdlq) was unable to obtain private storage. This
problem would typically arise as a result of some more global problem. For example if there is a
persistent problem that is causing messages to be written to the DLQ and the same problem (for
example queue full) is preventing the dead letter queue handler from taking the requested action
with the message, it is necessary for the dead letter queue handler to maintain a large amount of state
data to remember the retry counts associated with each message, or if the dead letter queue contains
a large number of messages and the rules table has directed the dead letter queue handler to ignore
the messages.

User action: Investigate if some more global problem exists, and if the dead letter queue contains a
large number of messages. If the problem persists contact your support center.

AMQB8752 Parameter(&3) exceeds maximum length on line &1.

Explanation: A parameter supplied as input to the dead letter handler exceeded the maximum
length for parameters of that type.

User action: Correct the input data and restatt the dead letter queue handler.

AMQB8753 Duplicate parameter(&3) found on line &1.

Explanation: Two or more parameters of the same type were supplied on a single input line to the
dead letter queue handler.

User action: Correct the input and restart the dead letter queue handler.

AMQA8756 Error detected releasing private storage.

Explanation: The dead letter queue handler (runmqdlq) was informed of an error while attempting
to release an area of private storage. The dead letter queue handler ends.

User action: This message should be preceeded by a message or FFST information from the
internal routine that detected the error. Take the action associated with the eatlier error information.

AMQB8757 Integer parameter(&3) outside permissable range on line &1.

Explanation: An integer supplied as input to the dead letter handler was outside of the valid range
of integers supported by the dead letter queue handler.

User action: Correct the input data and restatt the dead letter queue handler.

AMQB8758 &1 errors detected in input to runmqdig.

Explanation: One or more errors have been detected in the input to the dead letter queue
handler(runmqdlq). Error messages will have been generated for each of these errors. The dead
letter queue handler ends.

User action: Correct the input data and restatt the dead letter queue handler.

AMQ8759 Invalid combination of parameters to dead letter queue handler on line &1.
Explanation: An invalid combination of input parameters has been supplied to the dead letter
queue handler. Possible causes are: no ACTION specified, ACTION(FWD) but no FWDQ
specified, HEADER(YES | NO) specified without ACTION(FWD).

User action: Correct the input data and restart the dead letter queue handler.

AMQ8760 Unexpected failure while initializing process: Reason = &1.

Explanation: The dead letter queue handler (runmqdlq) could not perform basic initialization
required to use MQ services because of an unforseen error. The dead letter queue handler ends.
User action: Use the standard facilities supplied with your system to record the problem identifier

and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQ8761 Unexpected failure while connecting to queue manager: CompCode = &1 Reason
Explanation: The dead letter queue handler (runmqdlq) could not connect to the requested queue
manager because of an unforseen error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQ8762 Unexpected error while attempting to open queue manager: CompCode = &1
Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) could not open the queue manager because
of an unforseen error. The completion code and the reason can be used to identify the error. The
dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQA8763 Unexpected error while inquiring on queue manager: CompCode = &1 Reason =
&

Explanation: The dead letter queue handler (runmqdlq) could not inquire on the queue manager
because of an unforseen error. The completion code and the reason can be used to identify the
error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQB8764 Unexpected error while attempting to close queue manager: CompCode = &1
Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) could not close the queue manager because
of an unforseen error. The completion code and the reason can be used to identify the error. The
dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQ8765 Unexpected failure while opening dead letter queue for browse: CompCode = &1
Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) could not open the dead letter queue for
browsing because of an unforseen error. The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQB8766 Unexpected error while closing dead letter queue: CompCode = &1 Reason = &2
Explanation: The dead letter queue handler (runmqdlq) could not close the dead letter queue
because of an unforseen error. The completion code and the reason can be used to identify the

error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQB8767 Unexpected error while getting message from dead letter queue: CompCode =
&1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlq) could not get the next message from the
dead letter queue because of an unforseen error. The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQ8768 Unexpected error committing/backing out action on dead letter queue:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler (runmqdlqg) was unable to either commit or backout an
update to the dead letter queue because of an unforseen error. The completion code and the reason
can be used to identify the error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

AMQA8769 Unable to disconnect from queue manager: CompCode = &1 Reason = &?2.
Explanation: The dead letter queue handler (runmqdlq) was unable to disconnect from the queue
manager because of an unexpected error. The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with your system to record the problem identifier
and to save the generated output files. Contact your support center. Do not discard these files until
the problem has been resolved.

Remote messages

AMQ9001 Channel program ended normally.
Explanation: Channel program '&3' ended normally.
User action: None.

AMQ9002 Channel program started.
Explanation: Channel program '&3' started.
User action: None.

AMQQ9181 The response set by the exit is not valid.

Explanation: The user exit '&3' returned a response code '&1' that is not valid in the ExitResponse
field of the channel exit parameters (MQCXP). Message AMQ9190 is issued giving more details, and
the channel stops.

User action: Investigate why the user exit program set a response code that is not valid.

AMQO9182 The secondary response set by the exit is not valid.

Explanation: The user exit '&3' returned a secondary response code '&1" in the ExitResponse2 field
of the channel exit parameters (MQCXP) that is not valid. Message AMQ9190 is issued giving more
details, and the channel stops.

User action: Investigate why the user exit program set a secondaty response code that is not valid.

AMQO9184 The exit buffer address set by the exit is not valid.

Explanation: The user exit '&3' returned an address '&1' for the exit buffer that is not valid, when
the secondary response code in the ExitResponse2 field of the channel exit parameters (MQCXP) is
set to MQXR2_USE_EXIT_BUFFER. Message AMQ9190 is issued giving more details, and the
channel stops.

User action: Investigate why the user exit program set an exit buffer address that is not valid. The
most likely cause is the failure to set a value, so that the value is 0.

AMQ9189 The data length set by the exit is not valid.

Explanation: The user exit '&3' returned a data length value '&1' that was not greater than zero.
Message AMQ9190 is issued giving more details, and the channel stops.

User action: Investigate why the user exit program set a data length that is not valid.

AMQ9190 Channel stopping because of an error in the exit.

Explanation: The user exit '&3', invoked for channel '&4" with id '&1' and reason '&2', returned
values that are not valid, as reported in the preceding messages. The channel stops.

User action: Investigate why the user exit program set values that are not valid.

AMQO9196 Data length is larger than the agent buffer length.

Explanation: The data length '&1' set by exit '&3' is larger than the agent buffer length. The user
exit returned data in the supplied agent buffer, but the length specified is greater than the length of
the buffer. Message AMQ9190 is issued giving more details, and the channel stops.

User action: Investigate why the user exit program set a data length that is not valid..

AMQ9197 Data length is larger than the exit buffer length.
Explanation: The data length '&1' set by exit '&3' is larger than the exit buffer length. The user exit
returned data in the supplied exit buffer, but the length specified is greater than the length of the

buffer. Message AMQ9190 is issued giving more details, and the channel stops.
User action: Investigate why the user exit program set a data length that is not valid.

AMQ9201 Allocate failed to host '&3'.

Explanation: The attempt to allocate a conversation using &4 to host '&3' was not successful.
User action: The error may be due to an incorrect entry in the &4 parameters contained in the
channel definition to host '&3'. Correct the error and try again. If the error persists, record the error
values and contact your systems administrator. The return code from &4 was &1 (X'&2"). It may be
possible that the listening program at host '&3' is not running. If this is the case, perform the
relevant operations to start the listening program for protocol &4 and try again.

AMQ9202 Remote host '&3' not available, retry later.

Explanation: The attempt to allocate a conversation using &4 to host '&3' was not successful.
However the error may be a transitory one and it may be possible to successfully allocate a &4
conversation later.

User action: Try the connection again later. If the failure persists, record the error values and
contact your systems administrator. The return code from &4 is &1 (X'&2"). The reason for the
failure may be that this host cannot reach the destination host. It may also be possible that the
listening program at host '&3' was not running. If this is the case, perform the relevant operations to
start the &4 listening program, and try again.

AMQ9203 A configuration error for &4 occurred.

Explanation: Allocation of a &4 conversation to host '&3' was not possible.

User action: The configuration error may be one of the following: 1. If the communications
protocol is LUG.2, it may be that one of the transmission parameters (Mode, or TP Name) is
incorrect. Correct the error and try again. The mode name should be the same as the mode defined
on host &3. The TP name on &3 should be defined. 2. If the communications protocol is LU6.2, it
may be that an LLU6.2 session has not been established. Contact your systems administrator. 3. If the
communications protocol is TCP/IP, it may be that the host name specified is incorrect. Correct the
error and try again. 4. If the communications protocol is TCP/IP, it may be that the host name
specified cannot be resolved to a network address. The host name may not be in the nameserver.
The return code from &4 is &1 (X'&2". Record the error values and tell the system administrator.

AMQ9204 Connection to host '&3' rejected.

Explanation: Connection to host '&3' over &4 was rejected.

User action: The remote system might not be configured to allow connections from this host.
Check the &4 listener program has been started on host '&3'. If the conversation uses LUG.2, it is
possible that either the userid or password supplied to the remote host is incorrect. If the
conversation uses TCP/IP, it is possible that the remote host does not recognize the local host as a
valid host. The return code from &4 is &1 X('&2"). Record the values and tell the systems
administrator.

AMQ9205 The host name supplied is not valid.

Explanation: The supplied &4 host name '&3' could not be resolved into a network address. Either
the name server does not contain the host, or the name server was not available.

User action: Check the &4 configuration on your host.

AMQ9206 Error on send to host '&3".
Explanation: An error occurred sending data over &4 to '&3'. This may be due to a

communications failure.
User action: Record the value &1 and the return code &4 and tell your systems administrator.

AMQ9207 The data received from host '&3" is not valid.

Explanation: Incorrect data format received from host '&3' over &4. It may be that an unknown
host is attempting to send data. An FEST file has been generated containing the invalid data
received.

User action: Tell the systems administrator.

AMQ9208 Error on receive from host '&3".

Explanation: An error occurred receiving data from '&3' over &4. This may be due to a
communications failure.

User action: Record the &4 return code &1 (X'&2") and tell the systems administrator.

AMQ9209 Connection to host '&3" closed.

Explanation: An error occurred receiving data from '&3' over &4. The connection to the remote
host has unexpectedly terminated.

User action: Tell the systems administrator.

AMQ9210 Remote attach failed.

Explanation: There was an incoming attach from a remote host but the local host could not
complete the bind.

User action: Record the &4 return code &1 (X'&2") and tell the systems administrator who should
check the &4 configuration.

AMQ9211 Error allocating storage.

Explanation: The program was unable to obtain enough storage.

User action: Stop some programs which are using storage and retry the operation. If the problem
persists contact your Systems Administrator.

AMQ9212 A TCP/IP socket could not be allocated.

Explanation: A TCP/IP socket could not be created, possibly because of a storage problem.
User action: Try the program again. If the failure persists record the value &1 and tell the systems
administrator.

AMQ9213 A communications error for &4 occurred.

Explanation: An unexpected error occurred in communications.

User action: The return code from the &4&3 call was &1 (X'&2"). Record these values and tell the
systems administrator.

AMQ9214 Attempt to use an unsupported communications protocol.

Explanation: An attempt was made to use an unsupported communications protocol type &2.
User action: Check the channel definition file. It may be that the communications protocol entered
is not a currently supported one.

AMQ9215 Communications subsystem unavailable.

Explanation: An attempt was made to use the communications subsystem, but it has not been
started.

User action: Start the communications subsystem, and rerun the program.

AMQ9216 Usage: &3 [-m QMgrName] [-n TPName]

Explanation: Values passed to the responder channel program ate not valid. The parameter string
passed to this program is as follows :- [-m QMgrName]| [-n TPName] Default values will be used for
parameters not supplied.

User action: Correct the parameters passed to the Channel program and retry the operation.

AMQ9217 The TCP/IP listener program could not be started.

Explanation: An attempt was made to start a new instance of the listener program, but the program
was rejected.

User action: The failure could be because either the subsystem has not been started (in this case
you should start the subsystem), or there are too many programs waiting (in this case you should try
to start the listener program later).

AMQ9218 The TCP/IP listener program could not bind to port number &1.

Explanation: An attempt to bind the TCP/IP socket to the listener port was unsuccessful.

User action: The failure could be due to another program using the same port number. Record the
return code &2 from the bind and tell the systems administrator.

AMQ9219 The TCP/IP listener program could not create a new connection for the
incoming conversation.

Explanation: An attempt was made to create a new socket because an attach request was received,
but an error occurred.

User action: The failure may be transitory, try again later. If the problem persists, record the return
code &1 and tell the systems administrator. It may be necessary to free some jobs, or restart the
communications system.

AMQ9220 The &4 communications program could not be loaded.

Explanation: The attempt to load the &4 library or procedure '&3' failed with error code &1.

User action: Either the library must be installed on the system or the environment changed to allow
the program to locate it.

AMQ9221 Unrecognized protocol was specified.
Explanation: The specified value of '&3' was not recognized as one of the protocols supported.
User action: Correct the parameter and retry the operation.

AMQ9222 Cannot find the configuration file.

Explanation: The configuration file '&3' cannot be found. This file contains default definitions for
communication parameters. Default values will be used.

User action: None.

AMQ9223 Enter a protocol type.
Explanation: The operation you ate performing requitres that you enter the type of protocol.
User action: Add the protocol parameter and retry the operation.

AMQ9224 Unexpected token detected.
Explanation: On line &1 of the INI file keyword '&3' was read when a keyword was expected.
User action: Correct the file and retry the operation.

AMQ9225 File syntax error.
Explanation: A syntax error was detected on line &1 while processing the INI file.

User action: Correct the problem and retry the operation.

AMQ9226 Usage: &3 [-m QMgrName] -t (TCP | LU62 | NETBIOS) [ProtocolOptions]
Explanation: Values passed to the listener program were invalid. The parameter string passed to
this program is as follows :- [-m QMgrName]| (-t TCP [-p Port] | -t LU62 [-n TPName] | -t
NETBIOS [-] LocalName] [-e Names] [-s Sessions] [-o Commands] [-a Adaptot]) Default values
will be used for parameters not supplied.

User action: Correct the parameters passed to the listener program and retry the operation.

AMQ9227 &3 local host name not provided.
Explanation:
User action: Add a local name to the configuration file and retry the operation.

AMQ9228 The &4 responder program could not be started.

Explanation: An attempt was made to start an instance of the responder program, but the program
was rejected.

User action: The failure could be because either the subsystem has not been started (in this case
you should start the subsystem), or there are too many programs waiting (in this case you should try
to start the responder program later).

AMQ9229 The application has been ended.

Explanation: You have issued a request to end the application.
User action: None.

AMQ9230 An unexpected &4 event occurred.
Explanation: During the processing of network events, an unexpected event &1 occutrred.
User action: None.

AMQ9231 The supplied parameter is not valid.

Explanation: The value of the &4 &5 parameter has the value '&3'. This value has either not been
specified or has been specified incorrectly.

User action: Check value of the &5 parameter and correct it if necessary. If the fault persists,
record the return code (&1,&2) and &4 and tell the systems administrator.

AMQ9232 No &3 specified
Explanation: The operation requires the specification of the &3 field.
User action: Specify the &3 and retry the operation.

AMQO9233 Error creating Listener thread for &3.

Explanation: The process attempted to create a new thread for an incoming connection.
User action: Contact the systems administrator.

AMQ9235 The supplied Local LU was invalid.

Explanation: The &4 Local LU name '&3' was invalid.

User action: Either the Local LU name was entered incorrectly or it was not in the &4
communications configuration. Correct the error and try again.

AMQ9236 The supplied Partner LU was invalid.
Explanation: The &4 Partner LU name '&3' was invalid.
User action: Either the Partner LU name was entered incorrectly or it was not in the &4

communications configuration. Correct the error and try again.

AMQ9501 Usage: &3 [-m QMgrName] -c ChIName.

Explanation: Values passed to the channel program are not valid. The parameter string passed to
this program is as follows :- [-m QMgrName| -c ChIName Default values will be used for
parameters not supplied.

User action: Correct the parameters passed to the Channel program and retry the operation.

AMQ9502 Type of channel not suitable for action requested.

Explanation: The operation requested cannot be performed on channel '&3'. Some operations are
only valid for certain channel types. For example, you can only ping a channel from the end sending
the message.

User action: Check whether the channel name is specified correctly. If it is check that the channel
has been defined correctly.

AMQ9503 Channel negotiation failed.

Explanation: Channel '&3' between this machine and the remote machine could not be established
due to a negotiation failure.

User action: Tell the systems administrator who should look at the log on the remote system for
messages explaining the cause of the negotiation failure.

AMQ9504 A protocol error was detected for channel '&3’.

Explanation: During communications with the remote queue manager, the channel program
detected a protocol error. The failure type was &1 with associated data of &2.

User action: Contact the systems administrator who should examine the etror logs to determine the
cause of the failure.

AMQ9505 Channel sequence number wrap values are different.

Explanation: The sequence number for channel '&3' is &1, but the value specified at the remote
location is &2. The two values must be the same before the channel can be started.

User action: Change either the local or remote channel definitions so that the values specified for
the message sequence number wrap values are the same.

AMQ9506 Message receipt confirmation failed.

Explanation: Channel '&3' has ended because the remote queue manager did not accept the last
batch of messages.

User action: The error log for the channel at the remote site will contain an explanation of the
failure. Contact the remote Systems Administrator to resolve the problem.

AMQ9507 Channel '&3" is currently in-doubt.

Explanation: The requested operation cannot complete because the channel is in-doubt with host
‘&4

User action: Examine the status of the channel, and either restart a channel to resolve the in-doubt
state, or use the RESOLVE CHANNEL command to correct the problem manually.

AMQ9508 Program cannot connect to the queue manager.
Explanation: The connection attempt to queue manager '&4' failed with reason code &1.
User action: Ensure that the queue manager is available and operational.

AMQ9509 Program cannot open queue manager object.

Explanation: The attempt to open either the queue or queue manager object '&4' on queue
manager '&5' failed with reason code &1.
User action: Ensure that the queue is available and retry the operation.

AMQ9510 Messages cannot be retrieved from a queue.

Explanation: The attempt to get messages from queue '&4' on queue manager '&5' failed with
reason code &1.

User action: Ensure that the requited queue is available and operational.

AMQO9511 Messages cannot be put to a queue.

Explanation: The attempt to put messages to queue '&4' on queue manager '&5' failed with reason
code &1.

User action: Ensure that the required queue is available and operational.

AMQO9512 Ping operation is not valid for channel *&3".

Explanation: Ping may only be issued for SENDER or SERVER channel types.

User action: If the local channel is a receiver channel, you must issue the ping from the remote
queue managet.

AMQ9513 Maximum number of channels reached.

Explanation: The maximum number of channels that can be in use simultaneously has been
reached.

User action: Either wait for some of the operating channels to close or use the stop channel
command to close some channels. Retry the operation when some channels are available. The
number of permitted channels is a configurable parameter in the queue manager configuration file.

AMQO9514 Channel '&3" is in use.
Explanation: The requested operation failed because channel '&3' is currently active.
User action: Either end the channel manually, or wait for it to close, and retry the operation.

AMQ9515 Channel '&3' changed.

Explanation: The statistics shown are for the channel requested, but it is a new instance of the
channel. The previous channel instance has ended.

User action: None.

AMQ9516 File error occurred.

Explanation: The filesystem returned etror code &1 for file '&3".

User action: Record the name of the file '&3' and tell the systems administrator, who should ensure
that file '&3' is correct and available.

AMQO9517 File damaged.

Explanation: The program has detected damage to the contents of file '&3".

User action: Record the values and tell the systems administrator who must restore a saved version
of file '&3'. The return code was '&1' and the record length returned was '&2".

AMQ9518 File "&3" not found.

Explanation: The program requires that the file '&3' is present and available.

User action: Record the name of the file and tell the systems administrator who must ensure that
file '&3' is available to the program.

AMQ9519 Channel '&3" not found.

Explanation: The requested operation failed because the program could not find a definition of
channel '&3".

User action: Check that the name is specified correctly and the channel definition is available.

AMQ9520 Channel not defined remotely.

Explanation: There is no definition of channel '&3' at the remote location.

User action: Add an appropriate definition to the remote hosts list of defined channels and retry
the operation.

AMQ9521 Host is not supported by this channel.

Explanation: The connection across channel '&5' was refused because the remote host '&4' did not
match the host '&3' specified in the channel definition.

User action: Update the channel definition, or remove the explicit mention of the remote machine
connection name.

AMQ9522 Error accessing the status table.
Explanation: The program could not access the channel status table.
User action:

AMQ9523 Remote host detected a protocol error.

Explanation: During communications through channel '&3', the remote queue manager channel
program detected a protocol error. The failure type was &1 with associated data of &2.

User action: Tell the systems administrator, who should examine the error files to determine the
cause of the failure.

AMQ9524 Remote queue manager unavailable.

Explanation: Channel '&3' cannot start because the remote queue manager is not currently
available.

User action: Either start the remote queue managet, ot retry the operation later.

AMQ9525 Remote queue manager is ending.
Explanation: Channel '&3' is closing because the remote queue manager is ending.
User action: None.

AMQ9526 Message sequence number error for channel '&3".

Explanation: The local and remote queue managers do not agtee on the next message sequence
number. A message with sequence number &1 has been sent when sequence number &2 was
expected.

User action: Determine the cause of the inconsistency. It could be that the synchronization
information has become damaged, or has been backed out to a previous version. If the situation

cannot be resolved, the sequence number can be manually reset at the sending end of the channel
using the RESET CHANNEL command.

AMQ9527 Cannot send message through channel '&3’.

Explanation: The channel has closed because the remote queue manager cannot receive a message.
User action: Contact the systems administrator who should examine the error files of the remote
queue manager, to determine why the message cannot be received, and then restart the channel.

AMQ9528 User requested closure of channel '&3".

Explanation: The channel is closing because of a request by the user.
User action: None.

AMQ9529 Target queue unknown on remote host.

Explanation: Communication using channel '&3" has ended because the target queue for a message
is unknown at the remote host.

User action: Ensure that the remote host contains a correctly defined target queue, and restart the
channel.

AMQ9530 Program could not inquire queue attributes.

Explanation: The attempt to inquite the attributes of queue '&4' on queue manager '&5' failed with
reason code &1.

User action: Ensure that the queue is available and retry the operation.

AMQ9531 Transmission queue specification error.

Explanation: Queue '&4' identified as a transmission queue in the channel definition '&3' is not a
transmission queue.

User action: Ensure that the queue name is specified correctly. If so, alter the queue usage
parameter of the queue to that of a transmission queue.

AMQ9532 Program cannot set queue attributes.

Explanation: The attempt to set the attributes of queue '&4' on queue manager '&5' failed with
reason code &1.

User action: Ensure that the queue is available and retry the operation.

AMQ9533 Channel '&3" is not currently active.
Explanation: The channel was not stopped because it was not currently active.

User action: None.

AMQ9534 Channel '&3" is currently not enabled.
Explanation: The channel program ended because the channel is currently not enabled.
User action: Issue the START CHANNEL command to re-enable the channel.

AMQ9535 User exit not valid.

Explanation: Channel program '&3' ended because user exit '&4' is not valid.

User action: Ensure that the user exit is specified correctly in the channel definition, and that the
user exit program is correct and available.

AMQ9536 Channel ended by an exit.
Explanation: Channel program '&3' was ended by exit '&4".
User action: None.

AMQ9537 Usage: &3 [-m QMgrName] [-q InitQ]

Explanation: Values passed to the Channel initiator program are not valid. The parameter string
passed to this program is as follows :- [-m QMgrName]| [-q InitQ)] Default values will be used for
parameters not supplied.

User action: Correct the parameters passed to the program and retry the operation.

AMQ9538 Commit control error.

Explanation: An error occurred when attempting to start commitment control. Either exception

'&3" was received when querying commitment status, or commitment control could not be started.
User action: Refer to the error log for other messages pertaining to this problem.

AMQ9539 No channels available.

Explanation: The channel initiator program received a trigger message to start an MCA program to
process queue '&3'. The program could not find a defined, available channel to statt.

User action: Ensure that there is a defined channel, which is enabled, to process the transmission
queue.

AMQ9540 Commit failed.

Explanation: The program ended because return code &1 was received when an attempt was made
to commit change to the resource managers. The commit ID was '&3'".

User action: Tell the systems administrator.

AMQ9541 CCSID supplied for data conversion not supported.

Explanation: The program ended because, either the source CCSID '&1' or the target CCSID '&2'
is not valid, or is not currently supported.

User action: Correct the CCSID that is not valid, or ensure that the requested CCSID can be
supported.

AMQ9542 Queue manager is ending.
Explanation: The program will end because the queue manager is quiescing.
User action: None.

AMQ9543 Status table damaged.

Explanation: The channel status table has been damaged.

User action: End all running channels and issue a DISPLAY CHSTATUS command to see the
status of the channels. Use the standard facilities supplied with your system to record the problem
identifier, and to save the generated output files. Contact your Willow Technology support center.
Do not discard these files until the problem has been resolved.

AMQ9544 Messages written to the 'dead-letter queue’.

Explanation: During the processing of channel '&3' one or more messages have been put to a
dead-letter queue. The location of the messages is &1, where 1 is the local dead-letter queue and 2 is
the remote dead-letter queue.

User action: Examine the contents of the dead-letter queue. Each message is contained in a
structure that describes why the message was put to the queue, and to where it was originally
addressed. The program identifier (PID) of the processing program was '&4'.

AMQ9545 Disconnect interval expired.

Explanation: Channel '&3' closed because no messages arrived on the transmission queue within
the disconnect interval period.

User action: None.

AMQ9546 Error return code received.

Explanation: The program has ended because return code &1 was returned from an internal
function.

User action: Correct the reason for the failure and retry the operation.

AMQ9547 Type of remote channel not suitable for action requested.

Explanation: The operation requested cannot be performed because channel '&3' on the remote
machine is not of a suitable type. For example, if the local channel is defined as a sender the remote
machine must define its channel as either a receiver or requester.

User action: Check that the channel name is specified correctly. If it is, check that the remote
channel has been defined correctly.

AMQ9548 Message put to the "dead-letter queue’.

Explanation: During processing a message has been put to the dead-letter queue.

User action: Examine the contents of the dead-letter queue. Each message is contained in a
structure that describes why the message was put to the queue, and to where it was originally

addressed.

AMQ9549 Transmission Queue '&3" inhibited for MQGET.

Explanation: An MQGET failed because the transmission queue had been previously inhibited for
MQGET.

User action: None.

AMQ9550 Channel program &3 cannot be stopped at this time.
Explanation: The channel program is currently busy and cannot be stopped at the moment.
User action: Issue the STOP CHANNEL command again at a later time.

AMQ09551 Protocol not supported by remote host

Explanation: The operation you atre performing over Channel '&3' to the host at '&4' is not
supported by the target host.

User action: Check that the connection name parameter is specified correctly and that the levels of
the products in use are compatible.

AMQ9552 Security flow not received.

Explanation: During communications through channel '&3' the local security exit requested
security data from the remote machine. The security data has not been received so the channel has
been closed.

User action: Tell the systems administrator who should ensure that the security exit on the remote
machine is defined correctly.

AMQ9553 Not supported.
Explanation: The command or function attempted is not currently supported on this platform.

User action: None.

AMQ9554 User not authorized.

Explanation: You are not authorized to perform the Channel operation.

User action: Tell the systems administrator who should ensure that the correct access permissions
are available to you, and then retry the operation.

AMQ9555 File format error.
Explanation: The file '&3' does not have the expected format.
User action: Ensure that the file name is specified correctly.

AMQ9556 Channel synchronization file missing or damaged.
Explanation: The channel synchronization file '&3' is missing or does not correspond to the stored
channel information for queue manager '&4'.

User action: Rebuild the synchronization file using the rcrmqobj command recrmqobj -t syncfile (-m
g-mgr-name)

AMQ9557 Queue Manager UserlD initialization failed.
Explanation: The call to initialize the user ID failed with CompCode &1 and Reason &2.
User action: Correct the error and try again.

AMQ9558 Remote Channel is not currently available.

Explanation: The channel program ended because the channel '&3' is not currently available on the
remote system. This could be because the channel is disabled or that the remote system does not
have sufficient resources to run a further channel.

User action: Check the remote system to ensure that the channel is available to run and retry the
operation.

AMQ9560 Rebuild Synchronization File - program started
Explanation: Rebuilding the Synchronization file for Queue Manager '&3' .
User action: None.

AMQ9561 Rebuild Synchronization File - program completed normally
Explanation: Rebuild Synchronization File program completed normally.
User action: None.

AMQ9562 Synchronization file in use.
Explanation: The Synchronization file '&3' is in use and cannot be recreated.
User action: Stop any channel activity and retry the rermqobj command.

AMQ9563 Synchronization file cannot be deleted

Explanation: The filesystem returned error code &1 for file '&3'".

User action: Tell the systems administrator who should ensure that file '&3' is available and not in
use.

AMQ9564 Synchronization File cannot be created
Explanation: The filesystem returned etror code &1 for file '&3".
User action: Tell the systems administrator.

AMQ9565 No dead-letter queue defined.

Explanation: The queue manager '&4' does not have a defined dead-letter queue.

User action: Either correct the problem that caused the program to try and write a message to the
dead-letter queue or create a dead-letter queue for the queue manager.

AMQ9566 Invalid MQSERVER value

Explanation: The value of the MQSERVER environment variable was '&3'". The variable should be
in the format 'ChannelName/Protocol/ConnectionName'.

User action: Correct the MQSERVER value and retry the operation.

AMQ9572 Message header is not valid.

Explanation: Channel '&3' is stopping because a message header is not valid. During the processing
of the channel, a message was found that has a header that is not valid. The dead-letter queue has
been defined as a transmission queue, so a loop would be created if the message had been put there.
User action: Correct the problem that caused the message to have a header that is not valid.

AMQ9573 Maximum number of active channels reached.

Explanation: There are too many channels active to start another. The current defined maximum
number of active channels is &1.

User action: Either wait for some of the operating channels to close or use the stop channel
command to close some channels. Retry the operation when some channels are available. The
maximum number of active channels is a configurable parameter in the queue manager
configuration file.

AMQ9574 Channel &3 can now be started.

Explanation: Channel &3 has been waiting to start, but there were no channels available because
the maximum number of active channels was running. One, or more, of the active channels has now
closed so this channel can start.

User action:

AMQ9999 Channel program ended abnormally.

Explanation: Channel program '&3' ended abnormally.

User action: Look at previous error messages for channel program '&3' in the error files to
determine the cause of the failure.

Chapter 16. Glossary of terms and
abbreviations

This glossary defines MQSeries terms and abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM Dictionary of Computing, New York: McGraw-Hill,
1994.

This glossary includes terms and definitions from the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI).
Copies may be purchased from the American National Standards Institute, 11 West 42 Street, New
York, New York 10036. Definitions are identified by the symbol (A) after the definition.

A

administrator commands

MQSeries commands used to manage MQSeries objects, such as queues, processes, and
namelists.

alert

A message sent to a management services focal point in a network to identify a problem or an
impending problem.

alias queue object

An MQSeries object, the name of which is an alias for a base queue defined to the local queue
manager. When an application or a queue manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the associated base queue.

alternate user security

A security feature in which the authority of one user ID can be used by another user 1D, for
example, to open an MQSeries object.

APAR
Authorized program analysis report.
asynchronous messaging

A method of communication between programs in which programs place messages on message
queues. With asynchronous messaging, the sending program proceeds with its own processing
without waiting for a reply to its message. Contrast with synchronous messaging.

attribute

One of a set of properties that defines the characteristics of an MQSeries object.
authorization checks

Security checks that are performed when a user tries to open an MQSeries object.
authorization file

In MQSeries on UNIX systems, a file that provides security definitions for an object, a class of
objects, or all classes of objects.

authorization service

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeties for Windows NT, provides
authority checking of commands and MQI calls for the user identifier associated with the
command or call.

authorized program analysis report (APAR)

A report of a problem caused by a suspected defect in a current, unaltered release of a program.

B

back out

An operation that reverses all the changes made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of recovery or unit of work begins.

basic mapping support (BMS)

An interface between CICS and application programs that formats input and output display data
and routes multiple-page output messages without regard for control characters used by various
terminals.

BMS
Basic mapping support.
browse

In message queuing, to use the MQGET call to copy a message without removing it from the
queue. See also (et.

browse cursor

In message queuing, an indicator used when browsing a queue to identify the message that is
next in sequence.

C

call back

In MQSeries, a requester message channel initiates a transfer from a sender channel by first
calling the sender, then closing down and awaiting a call back.

CCF

Channel control function.
CCSID

Coded character set identifier.
CDF

Channel definition file.
channel

See message channel.
channel control function (CCF)

In MQSeries, a program to move messages from a transmission queue to a communication link,
and from a communication link to a local queue, together with an operator panel interface to
allow the setup and control of channels.

channel definition file (CDF)

In MQSeries, a file containing communication channel definitions that associate transmission
queues with communication links.

channel event

An event that indicates that a channel instance has become available or unavailable. Channel
events are generated on the queue managers at both ends of the channel.

checkpoint
(1) A time when significant information is written on the log. Contrast with syncpoint.

(2) In MQSeries on UNIX systems, the point in time when a data record described in the log is
the same as the data record in the queue. Checkpoints are generated automatically and are used
during the system restart process.

checkpoint
A time when significant information is written on the log. Contrast with syncpoint.
circular logging

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, the
process of keeping all restart data in a ring of log files. Logging fills the first file in the ring and
then moves on to the next, until all the files are full. At this point, logging goes back to the first
file in the ring and starts again, if the space has been freed or is no longer needed. Circular

logging is used during restart recovery, using the log to roll back transactions that were in
progtress when the system stopped. Contrast with linear logging.

client

A run-time component that provides access to queuing services on a server for local user
applications. The queues used by the applications reside on the server. See also MQSeries client.

client application

An application running on a workstation and linked to a client that gives the application access
to queuing services on a server.

client connection channel type

The type of MQI channel definition associated with an MQSeries client. See also Server connection
channel type.

coded character set identifier (CCSID)

The name of a coded set of characters and their code point assignments.
command

In MQSeries, an instruction that can be carried out by the queue manager.
command prefix (CPF)

In MQSeries for MVS/ESA, a character string that identifies the queue manager to which
MQSeries for MVS/ESA commands are directed, and from which MQSeries for MVS/ESA
operator messages are received.

command processor
The MQSeries component that processes commands.
command server

The MQSeries component that reads commands from the system-command input queue,
verifies them, and passes valid commands to the command processor.

completion code
A return code indicating how an MQI call has ended.
configuration file

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, a file that
contains configuration information related to, for example, logs, communications, or installable
services. Synonymous with .ini file. See also stanza.

connect

To provide a queue manager connection handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN call, or automatically by the MQOPEN
call.

connection handle

The identifier, or token, by which a program accesses the queue manager to which it is
connected.

context
Information about the origin of a message.
context security

In MQSeries, a method of allowing security to be handled such that messages are obliged to
carry details of their origins in the message descriptor.

control command

In MQSeties on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, a
command that can be entered interactively from the operating system command line. These
commands require only that the MQSeries product be installed; they do not require a special
utility or program to run them.

controlled shutdown

See quiesced shutdown.

D

data conversion interface (DCI)

The MQSeries interface to which customer- or vendor-written programs that convert
application data between different machine encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram
The simplest message that MQSeries supports. This type of message does not require a reply.
DCE
Distributed Computing Environment.
DCI
Data conversion interface.
dead-letter queue (DLQ)

A queue to which a queue manager or application sends messages that it cannot deliver to their

correct destination.
dead-letter queue handler

An MQSeries-supplied utility that monitors a dead-letter queue (DLQ) and processes messages
on the queue in accordance with a user-written rules table.

default object

A definition of an object (for example, a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for that object, the queue manager uses default
attributes in place of any that were not specified.

distributed application

In message queuing, a set of application programs that can each be connected to a different
queue manager, but that collectively constitute a single application.

Distributed Computing Environment (DCE)

Middleware that provides some basic services, making the development of distributed
applications easier. DCE is defined by the Open Software Foundation (OSF).

distributed queue management

In message queuing, the setup and control of message channels to queue managers on other
systems.

DLQ
Dead-letter queue.
dynamic queue

A local queue that is created when a program opens a model queue object. See also permanent
dynamic queue and temporary dynamic queue.

E

event
See channel event, instrumentation event, performance event, and queue manager event.
event data

In an event message, the part of the message data that contains information about the event
(such as the queue manager name, and the application that gave rise to the event). See also event
header.

event header

In an event message, the part of the message data that identifies the event type of the reason

code for the event.
event message

Contains information (such as the category of event, the name of the application that caused the
event, and queue manager statistics) relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue

The queue onto which the queue manager puts an event message after it detects an event. Each
category of event (queue manager, performance, or channel event) has its own event queue.

F
FFST
First Failure Support Technology.
FIFO
First-in-first-out.
First Failure Support Technology (FFST)

Used by MQSeries on UNIX systems, MQSeties for OS/2, MQSeties for Windows N'T, and
MQSeties for OS/400 to detect and report software problems.

first-in-first-out (FIFO)

A queuing technique in which the next item to be retrieved is the item that has been in the queue
for the longest time. (A)

Framework

In MQSeries, a collection of programming interfaces that allow customers or vendors to write
programs that extend or replace certain functions provided in MQSeries products. The
interfaces are:

MQSeries data conversion interface (DCI)
MQSeries message channel interface (MCI)
MQSeries name service interface (NSI)
MQSeries security enabling interface (SEI)

MQSeries trigger monitor interface (TMI)

get

In message queuing, to use the MQGET call to remove a message from a queue. See also browse.

H
handle

See connection handle and object handle.

I

immediate shutdown

In MQSeries, a shutdown of a queue manager that does not wait for applications to disconnect.
Current MQI calls are allowed to complete, but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown and preemptive shutdown.

ini file

See configuration file.
initiation queue

A local queue on which the queue manager puts trigger messages.
input/output parameter

A parameter of an MQI call in which you supply information when you make the call, and in
which the queue manager changes the information when the call completes or fails.

input parameter
A parameter of an MQI call in which you supply information when you make the call.
installable services

In MQSeries on UNIX systems, MQSeties for OS/2, and MQSeries for Windows NT,
additional functionality provided as independent components. The installation of each
component is optional: in-house or third-party components can be used instead. See also
authorization service, name service, and user identifier service.

instrumentation event

A facility that can be used to monitor the operation of queue managers in a network of
MQSeries systems. MQSeries provides instrumentation events for monitoring queue manager
resource definitions, performance conditions, and channel conditions. Instrumentation events
can be used by a user-written reporting mechanism in an administration application that displays
the events to a system operator. They also allow applications acting as agents for other
administration networks to monitor reports and create the appropriate alerts.

linear logging

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, the
process of keeping restart data in a sequence of files. New files are added to the sequence as
necessary. The space in which the data is written is not reused until the queue manager is
restarted. Contrast with circular logging.

listener

In MQSeries distributed queuing, a program that monitors information about incoming network
connections.

local definition
An MQSeries object that belongs to a local queue manager.
local definition of a remote queue

An MQSeries object that belongs to a local queue manager. This object defines the attributes of
a queue that is owned by another queue manager. In addition, it is used for queue-manager
aliasing and reply-to-queue aliasing.

locale

On UNIX systems, a subset of a user's environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting and character classification, collation, or
conversion). The queue manager CCSID is derived from the locale of the user ID that created
the queue manager.

local queue

A queue that belongs to the local queue manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager

The queue manager to which a program is connected and that provides message queuing
services to the program. Queue managers to which a program is not connected are called remote
queue managers, even if they are running on the same system as the program.

log

In MQSeries, records the work done by queue managers while they receive, transmit, and deliver
messages.

log control file

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, the file
containing information needed to monitor the use of log files (for example, their size and
location, and the name of the next available file).

log file

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a queue manager are recorded. If the
primary log files become full, MQSeries allocates secondary log files.

logical unit of work (LUW)

See unit of work.

M

MCA

Message channel agent.
MCI

Message channel interface.
media image

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, the
sequence of log records that contain an image of an object. The object can be recreated from
this image.

message

(1) In message queuing applications, a communication sent between programs. See also persistent
message and nonpersistent message.

(2) In system programming, information intended for the terminal operator or system
administrator.

message channel

In distributed message queuing, a mechanism for moving messages from one queue manager to
another. A message channel comprises two message channel agents (a sender and a receiver) and
a communication link. Contrast with MQI channel.

message channel agent (MCA)

A program that transmits prepared messages from a transmission queue to a communication
link, or from a communication link to a destination queue.

message channel interface (MCI)

The MQSeries interface to which customer- or vendor-written programs that transmit messages
between an MQSeries queue manager and another messaging system must conform. A part of
the MQSeries Framework.

message descriptor

Control information describing the message format and presentation that is carried as part of an

MQSeries message. The format of the message descriptor is defined by the MQMD structure.
message priority

In MQSeries, an attribute of a message that can affect the order in which messages on a queue
are retrieved and whether a trigger event is generated.

message queue
Synonym for queue.
message queue interface (MQI)

The programming interface provided by the MQSeries queue managers. This programming
interface allows application programs to access message queuing services.

message queuing

A programming technique in which each program within an application communicates with the
other programs by putting messages on queues.

message sequence numbering

A programming technique in which messages are given unique numbers during transmission
over a communication link. This enables the receiving process to check whether all messages are
received, to place them in a queue in the original order, and to discard duplicate messages.

messaging

See synchronous messaging and asynchronous messaging.
model queue object

A set of queue attributes that act as a template when a program creates a dynamic queue.
MQI

Message queue interface.

MQI channel

Connects an MQSeries client to a queue manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast with message channel.

MQSC
MQSeries commands.
MQSeries
A family of IBM licensed programs that provides message queuing services.

MQSeries client

Part of an MQSeries product that can be installed on a system without installing the full queue
manager. The MQSeries client accepts MQI calls from applications and communicates with a
queue manager on a server system.

MQSeries commands (MQSC)

Human readable commands, uniform across all platforms, that are used to manipulate MQSeries
objects. Contrast with programmable command format (PCF).

N

name service

In MQSeties for AIX, MQSeries for OS/2, and MQSeties for Windows N'T, the facility that
determines which queue manager owns a specified queue.

name service interface (NSI)

The MQSeries interface to which customer- or vendor-written programs that resolve queue-
name ownership must conform. A part of the MQSeries Framework.

name transformation

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows N'T, an
internal process that changes a queue manager name so that it is unique and valid for the system
being used. Externally, the queue manager name remains unchanged.

nonpersistent message

A message that does not survive a restart of the queue manager. Contrast with persistent message.
NSI

Name service interface.
null character

The character that is represented by X'00'".

O
OAM

Object authority manager.
object

In MQSeries, an object is a queue manager, a queue, a process definition, a channel, a namelist
(MVS/ESA only), or a storage class (MVS/ESA only).

Object authority manager (OAM)

In MQSeries on UNIX systems and MQSeries for Windows NT, the default authorization
service for command and object management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor

A data structure that identifies a particular MQSeries object (MQOD). Included in the descriptor
are the name of the object and the object type.

object handle

The identifier, or token, by which a program accesses the MQSeries object with which it is
working.

output parameter

A parameter of an MQI call in which the queue manager returns information when the call
completes or fails.

P
PCF
Programmable command format.
PCF command
See programmable command format.
pending event
An unscheduled event that occurs as a result of a connect request from a CICS adapter.
percolation

In error recovery, the passing along a preestablished path of control from a recovery routine to a
higher-level recovery routine.

performance event
A category of event that indicates a limit condition has occurred.
performance trace

An MQSeries trace option where the trace data is to be used for performance analysis and
tuning.

permanent dynamic queue

A dynamic queue that is deleted when it is closed only if deletion is explicitly requested.
Permanent dynamic queues are recovered if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic queue.

persistent message
A message that survives a restart of the queue manager. Contrast with nonpersistent message.
ping

In distributed queuing, a diagnostic aid that uses the exchange of a test message to confirm that
a message channel is functioning.

platform
In MQSeries, the operating system under which a queue manager is running.
preemptive shutdown

In MQSeries, a shutdown of a queue manager that does not wait for connected applications to
disconnect, not for current MQI calls to complete. Contrast with immediate shutdown and quiesced
shutdown.

principal

In MQSeries on UNIX systems, MQSeries for OS/2, and MQSeries for Windows NT, a term
used for a user identifier (ID). Used by the object authority manager for checking authorizations
to system resources.

process definition object

An MQSeries object that contains the definition of an MQSeries application. For example, a
queue manager uses the definition when it works with trigger messages.

programmable command format (PCF)
A type of MQSeries message that is used by:

User administration applications that put PCF commands onto the system command
input queue of a specified queue manager.

User administration applications, to get the results of a PCF command from a specified
queue managet.

A queue manager, as a notification that an event has occurred.
Contrast with MQSC.
program temporary fix (PTF)

A solution or by-pass of a problem diagnosed by Willow Technology field engineering as the
result of a defect in a current, unaltered release of a program.

PTF

Program temporary fix.

Q

queue

An MQSeries object. Message queuing applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a queue manager. Local queues can contain
a list of messages waiting to be processed. Queues of other types cannot contain messages--they
point to other queues, or can be used as models for dynamic queues.

gueue manager

(1) A system program that provides queuing services to applications. It provides an application
programming interface so that programs can access messages on the queues that the queue
manager owns. See also local queue manager and remote queue manager.

(2) An MQSeries object that defines the attributes of a particular queue manager.
queue manager event
An event that indicates:

An error condition has occurred in relation to the resources used by a queue manager.
For example, an error condition caused by a queue being unavailable.

A significant change has occurred in the queue manager. For example, a queue manager
has stopped or started.

queuing
See message queuing.
quiesced shutdown

(1) In MQSeries, a shutdown of a queue manager that allows all connected applications to
disconnect. Contrast with immediate shutdown and preemptive shutdown.

(2) A type of shutdown of the CICS adapter where the adapter disconnects from MQSeries, but
only after all the currently active tasks have been completed. Contrast with forced shutdown.

quiescing

In MQSeries, the state of a queue manager prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are allowed to start.

R
RBA

Relative byte address.

reason code

A return code that describes the reason for the failure or partial success of an MQI call.
receiver channel

In message queuing, a channel that responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

remote queue

A queue that belongs to a remote queue manager. Programs can put messages on remote
queues, but they cannot get messages from remote queues. Contrast with local queue.

remote queue manager

To a program, a queue manager is remote if it is not the queue manager to which the program is
connected.

remote queue object
See local definition of a remote queue.
remote queuing

In message queuing, the provision of services to enable applications to put messages on queues
belonging to other queue managers.

reply message
A type of message used for replies to request messages.
reply-to queue

The name of a queue to which the program that issued an MQPUT call wants a reply message or
report message sent.

report message

A type of message that gives information about another message. A report message can indicate
that a message has been delivered, has arrived at its destination, has expired, or could not be
processed for some reason.

requester channel

In message queuing, a channel that may be started remotely by a sender channel. The requester
channel accepts messages from the sender channel over a communication link and puts the
messages on the local queue designated in the message. See also server channel.

request message
A type of message used for requesting a reply from another program.

resolution path

The set of queues that are opened when an application specifies an alias or a remote queue on
input to the MQOPEN call.

resource manager

An application, program, or transaction that manages resources such as memory buffers and
data sets. MQSeries, CICS, and IMS are resource managers.

responder

In distributed queuing, a program that replies to network connection requests from another
system.

resynch

In MQSeries, an option to direct a channel to start up and resolve any in-doubt status messages,
but without restarting message transfer.

return codes

The collective name for completion codes and reason codes.
rollback

Synonym for back out.
rules table

A control file containing one or more rules that the dead-letter queue handler applies to
messages on the DLQ.

S

security enabling interface (SEI)

The MQSeries interface to which customer- or vendor-written programs that check
authorization, supply a user identifier, or perform authentication must conform. A part of the
MQSeries Framework.

SEI
Security enabling interface.
sender channel

In message queuing, a channel that initiates transfers, removes messages from a transmission
queue, and moves them over a communication link to a receiver or requester channel.

sequential delivery

In MQSeries, a method of transmitting messages with a sequence number so that the receiving
channel can reestablish the message sequence when storing the messages. This is required where

messages must be delivered only once, and in the correct order.
sequential number wrap value

In MQSeries, a method of ensuring that both ends of a communication link reset their current
message sequence numbers at the same time. Transmitting messages with a sequence number
ensures that the receiving channel can reestablish the message sequence when storing the
messages.

server

(1) In MQSeries, a queue manager that provides queue services to client applications running on
a remote workstation. (2) The program that responds to requests for information in the
particular two-program, information-flow model of client/server. See also client.

server channel

In message queuing, a channel that responds to a requester channel, removes messages from a
transmission queue, and moves them over a communication link to the requester channel.

server connection channel type

The type of MQI channel definition associated with the server that runs a queue manager. See
also client connection channel type.

service interval

A time interval, against which the elapsed time between a put or a get and a subsequent get is
compared by the queue manager in deciding whether the conditions for a service interval event
have been met. The service interval for a queue is specified by a queue attribute.

service interval event

An event related to the service interval.
shutdown

See immediate shutdown, preemptive shutdown, and quiesced shutdown.
single-phase backout

A method in which an action that is in progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit

A method in which a program can commit updates to a queue without coordinating those
updates with updates the program has made to resources controlled by another resource
manager. Contrast with two-phase commit.

SIT

System initialization table.

stanza

A group of lines in a configuration file that assigns a value to a parameter that modifies the
behavior of a queue manager, client, or channel. In MQSeries on UNIX systems, MQSeries for
OS/2, and MQSeries for Windows NT, a configuration (.ini) file may contain a number of
stanzas.

store and forward

The temporary storing of packets, messages, or frames in a data network before they are
retransmitted toward their destination.

synchronous messaging

A method of communication between programs in which programs place messages on message
queues. With synchronous messaging, the sending program waits for a reply to its message
before resuming its own processing. Contrast with asynchronous messaging.

syncpoint

An intermediate or end point during processing of a transaction at which the transaction's
protected resources are consistent. At a syncpoint, changes to the resources can safely be
committed, or they can be backed out to the previous syncpoint.

system.command.input queue

A local queue on which application programs can put MQSeries commands. The commands are
retrieved from the queue by the command server, which validates them and passes them to the
command processor to be run.

system control commands

Commands used to manipulate platform-specific entities such as buffer pools, storage classes,
and page sets.

system initialization table (SIT)

A table containing parameters used by CICS on start up.

T

temporary dynamic queue

A dynamic queue that is deleted when it is closed. Temporary dynamic queues are not recovered
if the queue manager fails, so they can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

thread
In MQSeries, the lowest level of parallel execution available on an operating system platform.

time-independent messaging

See asynchronous messaging.
TMI

Trigger monitor interface.
tranid

See transaction identifier.
transaction identifier

In CICS, a name that is specified when the transaction is defined, and that is used to invoke the
transaction.

transmission program
See message channel agent.
transmission queue

A local queue on which prepared messages destined for a remote queue manager are temporarily
stored.

trigger event

An event (such as a message arriving on a queue) that causes a queue manager to create a trigger
message on an initiation queue.

triggering

In MQSeries, a facility that allows a queue manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message
A message that contains information about the program that a trigger monitor is to start.
trigger monitor

A continuously-running application that serves one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process that serves the queue on which a trigger
event occurred.

trigger monitor interface (TMI)

The MQSeries interface to which customer- or vendor-written trigger monitor programs must
conform. A part of the MQSeries Framework.

two-phase commit

A protocol for the coordination of changes to recoverable resources when more than one

resource manager is used by a single transaction. Contrast with single-phase commit.

U

undelivered-message queue
See dead-letter queue.
undo/redo record

A log record used in recovery. The redo part of the record describes a change to be made to an
MQSeries object. The undo part describes how to back out the change if the work is not
committed.

unit of recovery

A recoverable sequence of operations within a single resource manager. Contrast with unit of
work.

unit of work

A recoverable sequence of operations performed by an application between two points of
consistency. A unit of work begins when a transaction starts or after a user-requested syncpoint.
It ends either at a user-requested syncpoint or at the end of a transaction. Contrast with unit of
recovery.

utility

In MQSeries, a supplied set of programs that provide the system operator or system
administrator with facilities in addition to those provided by the MQSeries commands. Some
utilities invoke more than one function.

© Copytight 1998-1999. Willow Technology, Inc. All Rights Reserved

